1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
open Std_internal
module Variant_and_record_intf = Variant_and_record_intf
module Helper (A : Variant_and_record_intf.S) (B : Variant_and_record_intf.S) = struct
type map = { map : 'a. 'a A.t -> 'a B.t }
let map_variant (type variant) { map } (variant : variant A.Variant.t) =
let map_create = function
| A.Tag.Args fct -> B.Tag_internal.Args fct
| A.Tag.Const k -> B.Tag_internal.Const k
in
let map_tag tag =
match tag with
| A.Variant.Tag tag ->
let label = A.Tag.label tag in
let rep = map (A.Tag.traverse tag) in
let arity = A.Tag.arity tag in
let args_labels = A.Tag.args_labels tag in
let index = A.Tag.index tag in
let ocaml_repr = A.Tag.ocaml_repr tag in
let tyid = A.Tag.tyid tag in
let create = map_create (A.Tag.create tag) in
B.Variant_internal.Tag
(B.Tag.internal_use_only
{ B.Tag_internal.label
; rep
; arity
; args_labels
; index
; ocaml_repr
; tyid
; create
})
in
let typename = A.Variant.typename_of_t variant in
let polymorphic = A.Variant.is_polymorphic variant in
let tags =
Array.init (A.Variant.length variant) (fun index ->
map_tag (A.Variant.tag variant index))
in
let value (a : variant) =
match A.Variant.value variant a with
| A.Variant.Value (atag, a) ->
(fun (type args) (atag : (variant, args) A.Tag.t) (a : args) ->
let (B.Variant_internal.Tag btag) = tags.(A.Tag.index atag) in
(fun (type ex) (btag : (variant, ex) B.Tag.t) ->
let Type_equal.T =
Typename.same_witness_exn (A.Tag.tyid atag) (B.Tag.tyid btag)
in
let btag = (btag : (variant, args) B.Tag.t) in
B.Variant_internal.Value (btag, a))
btag)
atag
a
in
B.Variant.internal_use_only { B.Variant_internal.typename; tags; polymorphic; value }
;;
let map_record (type record) { map } (record : record A.Record.t) =
let map_field field =
match field with
| A.Record.Field field ->
let label = A.Field.label field in
let rep = map (A.Field.traverse field) in
let index = A.Field.index field in
let is_mutable = A.Field.is_mutable field in
let tyid = A.Field.tyid field in
let get = A.Field.get field in
B.Record_internal.Field
(B.Field.internal_use_only
{ B.Field_internal.label; rep; index; is_mutable; tyid; get })
in
let typename = A.Record.typename_of_t record in
let has_double_array_tag = A.Record.has_double_array_tag record in
let fields =
Array.init (A.Record.length record) (fun index ->
map_field (A.Record.field record index))
in
let create { B.Record_internal.get } =
let get (type a) (afield : (_, a) A.Field.t) =
match fields.(A.Field.index afield) with
| B.Record_internal.Field bfield ->
(fun (type ex) (bfield : (record, ex) B.Field.t) ->
let Type_equal.T =
Typename.same_witness_exn (A.Field.tyid afield) (B.Field.tyid bfield)
in
let bfield = (bfield : (record, a) B.Field.t) in
get bfield)
bfield
in
A.Record.create record { A.Record.get }
in
B.Record.internal_use_only
{ B.Record_internal.typename; fields; has_double_array_tag; create }
;;
end
module type Named = sig
type 'a computation
module Context : sig
type t
val create : unit -> t
end
type 'a t
val init : Context.t -> 'a Typename.t -> 'a t
val get_wip_computation : 'a t -> 'a computation
val set_final_computation : 'a t -> 'a computation -> 'a computation
val share : _ Typerep.t -> bool
end
module type Computation = sig
type 'a t
include Variant_and_record_intf.S with type 'a t := 'a t
val int : int t
val int32 : int32 t
val int64 : int64 t
val nativeint : nativeint t
val char : char t
val float : float t
val string : string t
val bytes : bytes t
val bool : bool t
val unit : unit t
val option : 'a t -> 'a option t
val list : 'a t -> 'a list t
val array : 'a t -> 'a array t
val lazy_t : 'a t -> 'a lazy_t t
val ref_ : 'a t -> 'a ref t
val function_ : 'a t -> 'b t -> ('a -> 'b) t
val tuple2 : 'a t -> 'b t -> ('a * 'b) t
val tuple3 : 'a t -> 'b t -> 'c t -> ('a * 'b * 'c) t
val tuple4 : 'a t -> 'b t -> 'c t -> 'd t -> ('a * 'b * 'c * 'd) t
val tuple5 : 'a t -> 'b t -> 'c t -> 'd t -> 'e t -> ('a * 'b * 'c * 'd * 'e) t
val record : 'a Record.t -> 'a t
val variant : 'a Variant.t -> 'a t
module Named : Named with type 'a computation := 'a t
end
(* special functor application for computation as closure of the form [a -> b] *)
module Make_named_for_closure (X : sig
type 'a input
type 'a output
type 'a t = 'a input -> 'a output
end) =
struct
module Context = struct
type t = unit
let create = ignore
end
type 'a t =
{ runtime_dereference : 'a X.t
; runtime_reference : 'a X.t ref
; compiletime_dereference : 'a X.t option ref
}
exception Undefined of string
let init () name =
let path = Typename.Uid.name (Typename.uid name) in
let r = ref (fun _ -> raise (Undefined path)) in
{ runtime_dereference = (fun input -> !r input)
; runtime_reference = r
; compiletime_dereference = ref None
}
;;
let get_wip_computation shared =
match shared.compiletime_dereference.contents with
| Some clos -> clos
| None -> shared.runtime_dereference
;;
let set_final_computation shared computation =
let compiletime_dereference = shared.compiletime_dereference in
match compiletime_dereference.contents with
| Some _ -> assert false
| None ->
if Base.phys_equal shared.runtime_dereference computation then assert false;
compiletime_dereference := Some computation;
shared.runtime_reference := computation;
computation
;;
let share _ = true
end
module Ident = struct
type t =
{ name : string
; implements : Typename.Uid.t -> bool
}
exception Broken_dependency of string
let check_dependencies name required =
match required with
| [] -> fun _ -> ()
| _ ->
fun uid ->
List.iter
(fun { name = name'; implements } ->
if not (implements uid)
then (
(* something is wrong with the set up, this is an error during the
initialization of the program, we rather fail with a human
readable output *)
let message =
Printf.sprintf
"Type_generic %S requires %S for uid %S\n"
name
name'
(Typename.Uid.name uid)
in
prerr_endline message;
raise (Broken_dependency message)))
required
;;
end
(* Extending an existing generic *)
module type Extending = sig
type 'a t
type 'a computation = 'a t
val ident : Ident.t
(* generic_ident * typename or info *)
exception Not_implemented of string * string
module type S = sig
type t
include Typerepable.S with type t := t
val compute : t computation
end
module type S1 = sig
type 'a t
include Typerepable.S1 with type 'a t := 'a t
val compute : 'a computation -> 'a t computation
end
module type S2 = sig
type ('a, 'b) t
include Typerepable.S2 with type ('a, 'b) t := ('a, 'b) t
val compute : 'a computation -> 'b computation -> ('a, 'b) t computation
end
module type S3 = sig
type ('a, 'b, 'c) t
include Typerepable.S3 with type ('a, 'b, 'c) t := ('a, 'b, 'c) t
val compute
: 'a computation
-> 'b computation
-> 'c computation
-> ('a, 'b, 'c) t computation
end
module type S4 = sig
type ('a, 'b, 'c, 'd) t
include Typerepable.S4 with type ('a, 'b, 'c, 'd) t := ('a, 'b, 'c, 'd) t
val compute
: 'a computation
-> 'b computation
-> 'c computation
-> 'd computation
-> ('a, 'b, 'c, 'd) t computation
end
module type S5 = sig
type ('a, 'b, 'c, 'd, 'e) t
include Typerepable.S5 with type ('a, 'b, 'c, 'd, 'e) t := ('a, 'b, 'c, 'd, 'e) t
val compute
: 'a computation
-> 'b computation
-> 'c computation
-> 'd computation
-> 'e computation
-> ('a, 'b, 'c, 'd, 'e) t computation
end
val register0 : (module S) -> unit
val register1 : (module S1) -> unit
val register2 : (module S2) -> unit
val register3 : (module S3) -> unit
val register4 : (module S4) -> unit
val register5 : (module S5) -> unit
(* special less scary type when the type has no parameters *)
val register : 'a Typerep.t -> 'a computation -> unit
(*
Essentially because we cannot talk about a variable of kind * -> k
val register1 : 'a 't Typerep.t -> ('a computation -> 'a 't computation) -> unit
...
*)
end
(* Implementing a new generic *)
module type S_implementation = sig
include Extending
(* raise using the current ident *)
val raise_not_implemented : string -> 'a
type implementation = { generic : 'a. 'a Typerep.t -> 'a computation }
(*
Standard case, find a extended_implementation, or look in the content
*)
val _using_extended_implementation
: implementation
-> 'a Typerep.Named.t
-> 'a Typerep.t lazy_t option
-> 'a computation
(*
This function allows you more control on what you want to do
*)
val find_extended_implementation
: implementation
-> 'a Typerep.Named.t
-> 'a computation option
end
module type S = sig
include Extending
val of_typerep : 'a Typerep.t -> [ `generic of 'a computation ]
module Computation : Computation with type 'a t = 'a t
end
module Make_S_implementation (X : sig
type 'a t
val name : string
val required : Ident.t list
end) : S_implementation with type 'a t = 'a X.t = struct
type 'a t = 'a X.t
type 'a computation = 'a t
include Type_generic_intf.M (struct
type 'a t = 'a computation
end)
(* we do not use core since we are earlier in the dependencies graph *)
module Uid_table = struct
include Hashtbl.Make (Typename.Uid)
let find table key =
if Lazy.is_val table
then (
let table = Lazy.force table in
try Some (find table key) with
| Base.Not_found_s _ | Stdlib.Not_found -> None)
else None
;;
let check_dependencies = Ident.check_dependencies X.name X.required
let replace table key value =
check_dependencies key;
replace (Lazy.force table) key value
;;
let mem table key =
if Lazy.is_val table
then (
let table = Lazy.force table in
mem table key)
else false
;;
end
let size = 256
let table0 = lazy (Uid_table.create size)
let table1 = lazy (Uid_table.create size)
let table2 = lazy (Uid_table.create size)
let table3 = lazy (Uid_table.create size)
let table4 = lazy (Uid_table.create size)
let table5 = lazy (Uid_table.create size)
let is_registered uid =
Uid_table.mem table0 uid
|| Uid_table.mem table1 uid
|| Uid_table.mem table2 uid
|| Uid_table.mem table3 uid
|| Uid_table.mem table4 uid
|| Uid_table.mem table5 uid
;;
let ident = { Ident.name = X.name; implements = is_registered }
module Find0 (T : Typerep.Named.T0) : sig
val compute : unit -> T.named computation option
end = struct
let compute () =
match Uid_table.find table0 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S = (val rep : S) in
let witness = Typename.same_witness_exn S.typename_of_t T.typename_of_named in
let module L =
Type_equal.Lift (struct
type 'a t = 'a computation
end)
in
Some (Type_equal.conv (L.lift witness) S.compute)
;;
end
module Find1 (T : Typerep.Named.T1) : sig
val compute : unit -> (T.a computation -> T.a T.named computation) option
end = struct
let compute () =
match Uid_table.find table1 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S1 = (val rep : S1) in
let module Conv =
Typename.Same_witness_exn_1
(S1)
(struct
type 'a t = 'a T.named
let typename_of_t = T.typename_of_named
end)
in
let module L =
Type_equal.Lift (struct
type 'a t = T.a computation -> 'a computation
end)
in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S1.compute)
;;
end
module Find2 (T : Typerep.Named.T2) : sig
val compute
: unit
-> (T.a computation -> T.b computation -> (T.a, T.b) T.named computation) option
end = struct
let compute () =
match Uid_table.find table2 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S2 = (val rep : S2) in
let module Conv =
Typename.Same_witness_exn_2
(S2)
(struct
type ('a, 'b) t = ('a, 'b) T.named
let typename_of_t = T.typename_of_named
end)
in
let module L =
Type_equal.Lift (struct
type 'a t = T.a computation -> T.b computation -> 'a computation
end)
in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S2.compute)
;;
end
module Find3 (T : Typerep.Named.T3) : sig
val compute
: unit
-> (T.a computation
-> T.b computation
-> T.c computation
-> (T.a, T.b, T.c) T.named computation)
option
end = struct
let compute () =
match Uid_table.find table3 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S3 = (val rep : S3) in
let module Conv =
Typename.Same_witness_exn_3
(S3)
(struct
type ('a, 'b, 'c) t = ('a, 'b, 'c) T.named
let typename_of_t = T.typename_of_named
end)
in
let module L =
Type_equal.Lift (struct
type 'a t =
T.a computation -> T.b computation -> T.c computation -> 'a computation
end)
in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S3.compute)
;;
end
module Find4 (T : Typerep.Named.T4) : sig
val compute
: unit
-> (T.a computation
-> T.b computation
-> T.c computation
-> T.d computation
-> (T.a, T.b, T.c, T.d) T.named computation)
option
end = struct
let compute () =
match Uid_table.find table4 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S4 = (val rep : S4) in
let module Conv =
Typename.Same_witness_exn_4
(S4)
(struct
type ('a, 'b, 'c, 'd) t = ('a, 'b, 'c, 'd) T.named
let typename_of_t = T.typename_of_named
end)
in
let module L =
Type_equal.Lift (struct
type 'a t =
T.a computation
-> T.b computation
-> T.c computation
-> T.d computation
-> 'a computation
end)
in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S4.compute)
;;
end
module Find5 (T : Typerep.Named.T5) : sig
val compute
: unit
-> (T.a computation
-> T.b computation
-> T.c computation
-> T.d computation
-> T.e computation
-> (T.a, T.b, T.c, T.d, T.e) T.named computation)
option
end = struct
let compute () =
match Uid_table.find table5 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S5 = (val rep : S5) in
let module Conv =
Typename.Same_witness_exn_5
(S5)
(struct
type ('a, 'b, 'c, 'd, 'e) t = ('a, 'b, 'c, 'd, 'e) T.named
let typename_of_t = T.typename_of_named
end)
in
let module L =
Type_equal.Lift (struct
type 'a t =
T.a computation
-> T.b computation
-> T.c computation
-> T.d computation
-> T.e computation
-> 'a computation
end)
in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S5.compute)
;;
end
let unit = Typename.static
let register0 compute =
let module S = (val compute : S) in
let uid = Typename.uid S.typename_of_t in
Uid_table.replace table0 uid compute
;;
let register1 compute =
let module S1 = (val compute : S1) in
let uid = Typename.uid (S1.typename_of_t unit) in
Uid_table.replace table1 uid compute
;;
let register2 compute =
let module S2 = (val compute : S2) in
let uid = Typename.uid (S2.typename_of_t unit unit) in
Uid_table.replace table2 uid compute
;;
let register3 compute =
let module S3 = (val compute : S3) in
let uid = Typename.uid (S3.typename_of_t unit unit unit) in
Uid_table.replace table3 uid compute
;;
let register4 compute =
let module S4 = (val compute : S4) in
let uid = Typename.uid (S4.typename_of_t unit unit unit unit) in
Uid_table.replace table4 uid compute
;;
let register5 compute =
let module S5 = (val compute : S5) in
let uid = Typename.uid (S5.typename_of_t unit unit unit unit unit) in
Uid_table.replace table5 uid compute
;;
let register (type a) typerep_of_a compute =
let module S = struct
type t = a
let typename_of_t = Typerep.typename_of_t typerep_of_a
let typerep_of_t = typerep_of_a
let compute = compute
end
in
register0 (module S : S)
;;
(* IMPLEMENTATION *)
type implementation = { generic : 'a. 'a Typerep.t -> 'a computation }
let find_extended_implementation (type a) aux = function
| Typerep.Named.T0 rep ->
let module T = (val rep : Typerep.Named.T0 with type t = a) in
let module Custom = Find0 (T) in
(match Custom.compute () with
| Some custom ->
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None)
| Typerep.Named.T1 rep ->
let module T = (val rep : Typerep.Named.T1 with type t = a) in
let module Custom = Find1 (T) in
(match Custom.compute () with
| Some custom ->
let custom = (custom (aux.generic T.a) : T.a T.named computation) in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None)
| Typerep.Named.T2 rep ->
let module T = (val rep : Typerep.Named.T2 with type t = a) in
let module Custom = Find2 (T) in
(match Custom.compute () with
| Some custom ->
let custom =
(custom (aux.generic T.a) (aux.generic T.b) : (T.a, T.b) T.named computation)
in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None)
| Typerep.Named.T3 rep ->
let module T = (val rep : Typerep.Named.T3 with type t = a) in
let module Custom = Find3 (T) in
(match Custom.compute () with
| Some custom ->
let custom =
(custom (aux.generic T.a) (aux.generic T.b) (aux.generic T.c)
: (T.a, T.b, T.c) T.named computation)
in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None)
| Typerep.Named.T4 rep ->
let module T = (val rep : Typerep.Named.T4 with type t = a) in
let module Custom = Find4 (T) in
(match Custom.compute () with
| Some custom ->
let custom =
(custom (aux.generic T.a) (aux.generic T.b) (aux.generic T.c) (aux.generic T.d)
: (T.a, T.b, T.c, T.d) T.named computation)
in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None)
| Typerep.Named.T5 rep ->
let module T = (val rep : Typerep.Named.T5 with type t = a) in
let module Custom = Find5 (T) in
(match Custom.compute () with
| Some custom ->
let custom =
(custom
(aux.generic T.a)
(aux.generic T.b)
(aux.generic T.c)
(aux.generic T.d)
(aux.generic T.e)
: (T.a, T.b, T.c, T.d, T.e) T.named computation)
in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None)
;;
exception Not_implemented of string * string
let raise_not_implemented string = raise (Not_implemented (X.name, string))
let _using_extended_implementation aux rep content =
match find_extended_implementation aux rep with
| Some computation -> computation
| None ->
(match content with
| Some (lazy content) -> aux.generic content
| None ->
let typename = Typerep.Named.typename_of_t rep in
let name = Typename.Uid.name (Typename.uid typename) in
raise_not_implemented name)
;;
end
module _ = Hashtbl.Make (Typename.Key)
module Make (X : sig
type 'a t
val name : string
val required : Ident.t list
include Computation with type 'a t := 'a t
end) =
struct
module Computation = X
include Make_S_implementation (X)
module Memo = Typename.Table (struct
type 'a t = 'a X.Named.t
end)
module Helper = Helper (Typerep) (Computation)
let of_typerep rep =
let context = X.Named.Context.create () in
let memo_table = Memo.create 32 in
let rec of_typerep : type a. a Typerep.t -> a t = function
| Typerep.Int -> X.int
| Typerep.Int32 -> X.int32
| Typerep.Int64 -> X.int64
| Typerep.Nativeint -> X.nativeint
| Typerep.Char -> X.char
| Typerep.Float -> X.float
| Typerep.String -> X.string
| Typerep.Bytes -> X.bytes
| Typerep.Bool -> X.bool
| Typerep.Unit -> X.unit
| Typerep.Option rep -> X.option (of_typerep rep)
| Typerep.List rep -> X.list (of_typerep rep)
| Typerep.Array rep -> X.array (of_typerep rep)
| Typerep.Lazy rep -> X.lazy_t (of_typerep rep)
| Typerep.Ref rep -> X.ref_ (of_typerep rep)
| Typerep.Function (dom, rng) -> X.function_ (of_typerep dom) (of_typerep rng)
| Typerep.Tuple tuple ->
(* do NOT write [X.tuple2 (of_typerep a) (of_typerep b)]
because of_typerep can contain a side effect and [a] should be executed
before [b] *)
(match tuple with
| Typerep.Tuple.T2 (a, b) ->
let ra = of_typerep a in
let rb = of_typerep b in
X.tuple2 ra rb
| Typerep.Tuple.T3 (a, b, c) ->
let ra = of_typerep a in
let rb = of_typerep b in
let rc = of_typerep c in
X.tuple3 ra rb rc
| Typerep.Tuple.T4 (a, b, c, d) ->
let ra = of_typerep a in
let rb = of_typerep b in
let rc = of_typerep c in
let rd = of_typerep d in
X.tuple4 ra rb rc rd
| Typerep.Tuple.T5 (a, b, c, d, e) ->
let ra = of_typerep a in
let rb = of_typerep b in
let rc = of_typerep c in
let rd = of_typerep d in
let re = of_typerep e in
X.tuple5 ra rb rc rd re)
| Typerep.Record record ->
X.record (Helper.map_record { Helper.map = of_typerep } record)
| Typerep.Variant variant ->
X.variant (Helper.map_variant { Helper.map = of_typerep } variant)
| Typerep.Named (named, content) ->
let typename = Typerep.Named.typename_of_t named in
(match Memo.find memo_table typename with
| Some shared -> X.Named.get_wip_computation shared
| None ->
(match find_extended_implementation { generic = of_typerep } named with
| Some computation -> computation
| None ->
(match content with
| None ->
let name = Typename.Uid.name (Typename.uid typename) in
raise_not_implemented name
| Some (lazy content) ->
if X.Named.share content
then (
let shared = X.Named.init context typename in
Memo.set memo_table typename shared;
let computation = of_typerep content in
X.Named.set_final_computation shared computation)
else of_typerep content)))
in
let computation = of_typerep rep in
`generic computation
;;
end
|