File: type_generic.ml

package info (click to toggle)
typerep 1%3A0.17.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 260 kB
  • sloc: ml: 2,583; makefile: 14
file content (836 lines) | stat: -rw-r--r-- 24,958 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
open Std_internal
module Variant_and_record_intf = Variant_and_record_intf

module Helper (A : Variant_and_record_intf.S) (B : Variant_and_record_intf.S) = struct
  type map = { map : 'a. 'a A.t -> 'a B.t }

  let map_variant (type variant) { map } (variant : variant A.Variant.t) =
    let map_create = function
      | A.Tag.Args fct -> B.Tag_internal.Args fct
      | A.Tag.Const k -> B.Tag_internal.Const k
    in
    let map_tag tag =
      match tag with
      | A.Variant.Tag tag ->
        let label = A.Tag.label tag in
        let rep = map (A.Tag.traverse tag) in
        let arity = A.Tag.arity tag in
        let args_labels = A.Tag.args_labels tag in
        let index = A.Tag.index tag in
        let ocaml_repr = A.Tag.ocaml_repr tag in
        let tyid = A.Tag.tyid tag in
        let create = map_create (A.Tag.create tag) in
        B.Variant_internal.Tag
          (B.Tag.internal_use_only
             { B.Tag_internal.label
             ; rep
             ; arity
             ; args_labels
             ; index
             ; ocaml_repr
             ; tyid
             ; create
             })
    in
    let typename = A.Variant.typename_of_t variant in
    let polymorphic = A.Variant.is_polymorphic variant in
    let tags =
      Array.init (A.Variant.length variant) (fun index ->
        map_tag (A.Variant.tag variant index))
    in
    let value (a : variant) =
      match A.Variant.value variant a with
      | A.Variant.Value (atag, a) ->
        (fun (type args) (atag : (variant, args) A.Tag.t) (a : args) ->
          let (B.Variant_internal.Tag btag) = tags.(A.Tag.index atag) in
          (fun (type ex) (btag : (variant, ex) B.Tag.t) ->
            let Type_equal.T =
              Typename.same_witness_exn (A.Tag.tyid atag) (B.Tag.tyid btag)
            in
            let btag = (btag : (variant, args) B.Tag.t) in
            B.Variant_internal.Value (btag, a))
            btag)
          atag
          a
    in
    B.Variant.internal_use_only { B.Variant_internal.typename; tags; polymorphic; value }
  ;;

  let map_record (type record) { map } (record : record A.Record.t) =
    let map_field field =
      match field with
      | A.Record.Field field ->
        let label = A.Field.label field in
        let rep = map (A.Field.traverse field) in
        let index = A.Field.index field in
        let is_mutable = A.Field.is_mutable field in
        let tyid = A.Field.tyid field in
        let get = A.Field.get field in
        B.Record_internal.Field
          (B.Field.internal_use_only
             { B.Field_internal.label; rep; index; is_mutable; tyid; get })
    in
    let typename = A.Record.typename_of_t record in
    let has_double_array_tag = A.Record.has_double_array_tag record in
    let fields =
      Array.init (A.Record.length record) (fun index ->
        map_field (A.Record.field record index))
    in
    let create { B.Record_internal.get } =
      let get (type a) (afield : (_, a) A.Field.t) =
        match fields.(A.Field.index afield) with
        | B.Record_internal.Field bfield ->
          (fun (type ex) (bfield : (record, ex) B.Field.t) ->
            let Type_equal.T =
              Typename.same_witness_exn (A.Field.tyid afield) (B.Field.tyid bfield)
            in
            let bfield = (bfield : (record, a) B.Field.t) in
            get bfield)
            bfield
      in
      A.Record.create record { A.Record.get }
    in
    B.Record.internal_use_only
      { B.Record_internal.typename; fields; has_double_array_tag; create }
  ;;
end

module type Named = sig
  type 'a computation

  module Context : sig
    type t

    val create : unit -> t
  end

  type 'a t

  val init : Context.t -> 'a Typename.t -> 'a t
  val get_wip_computation : 'a t -> 'a computation
  val set_final_computation : 'a t -> 'a computation -> 'a computation
  val share : _ Typerep.t -> bool
end

module type Computation = sig
  type 'a t

  include Variant_and_record_intf.S with type 'a t := 'a t

  val int : int t
  val int32 : int32 t
  val int64 : int64 t
  val nativeint : nativeint t
  val char : char t
  val float : float t
  val string : string t
  val bytes : bytes t
  val bool : bool t
  val unit : unit t
  val option : 'a t -> 'a option t
  val list : 'a t -> 'a list t
  val array : 'a t -> 'a array t
  val lazy_t : 'a t -> 'a lazy_t t
  val ref_ : 'a t -> 'a ref t
  val function_ : 'a t -> 'b t -> ('a -> 'b) t
  val tuple2 : 'a t -> 'b t -> ('a * 'b) t
  val tuple3 : 'a t -> 'b t -> 'c t -> ('a * 'b * 'c) t
  val tuple4 : 'a t -> 'b t -> 'c t -> 'd t -> ('a * 'b * 'c * 'd) t
  val tuple5 : 'a t -> 'b t -> 'c t -> 'd t -> 'e t -> ('a * 'b * 'c * 'd * 'e) t
  val record : 'a Record.t -> 'a t
  val variant : 'a Variant.t -> 'a t

  module Named : Named with type 'a computation := 'a t
end

(* special functor application for computation as closure of the form [a -> b] *)
module Make_named_for_closure (X : sig
  type 'a input
  type 'a output
  type 'a t = 'a input -> 'a output
end) =
struct
  module Context = struct
    type t = unit

    let create = ignore
  end

  type 'a t =
    { runtime_dereference : 'a X.t
    ; runtime_reference : 'a X.t ref
    ; compiletime_dereference : 'a X.t option ref
    }

  exception Undefined of string

  let init () name =
    let path = Typename.Uid.name (Typename.uid name) in
    let r = ref (fun _ -> raise (Undefined path)) in
    { runtime_dereference = (fun input -> !r input)
    ; runtime_reference = r
    ; compiletime_dereference = ref None
    }
  ;;

  let get_wip_computation shared =
    match shared.compiletime_dereference.contents with
    | Some clos -> clos
    | None -> shared.runtime_dereference
  ;;

  let set_final_computation shared computation =
    let compiletime_dereference = shared.compiletime_dereference in
    match compiletime_dereference.contents with
    | Some _ -> assert false
    | None ->
      if Base.phys_equal shared.runtime_dereference computation then assert false;
      compiletime_dereference := Some computation;
      shared.runtime_reference := computation;
      computation
  ;;

  let share _ = true
end

module Ident = struct
  type t =
    { name : string
    ; implements : Typename.Uid.t -> bool
    }

  exception Broken_dependency of string

  let check_dependencies name required =
    match required with
    | [] -> fun _ -> ()
    | _ ->
      fun uid ->
        List.iter
          (fun { name = name'; implements } ->
            if not (implements uid)
            then (
              (* something is wrong with the set up, this is an error during the
                  initialization of the program, we rather fail with a human
                  readable output *)
              let message =
                Printf.sprintf
                  "Type_generic %S requires %S for uid %S\n"
                  name
                  name'
                  (Typename.Uid.name uid)
              in
              prerr_endline message;
              raise (Broken_dependency message)))
          required
  ;;
end

(* Extending an existing generic *)
module type Extending = sig
  type 'a t
  type 'a computation = 'a t

  val ident : Ident.t

  (* generic_ident * typename or info *)
  exception Not_implemented of string * string

  module type S = sig
    type t

    include Typerepable.S with type t := t

    val compute : t computation
  end

  module type S1 = sig
    type 'a t

    include Typerepable.S1 with type 'a t := 'a t

    val compute : 'a computation -> 'a t computation
  end

  module type S2 = sig
    type ('a, 'b) t

    include Typerepable.S2 with type ('a, 'b) t := ('a, 'b) t

    val compute : 'a computation -> 'b computation -> ('a, 'b) t computation
  end

  module type S3 = sig
    type ('a, 'b, 'c) t

    include Typerepable.S3 with type ('a, 'b, 'c) t := ('a, 'b, 'c) t

    val compute
      :  'a computation
      -> 'b computation
      -> 'c computation
      -> ('a, 'b, 'c) t computation
  end

  module type S4 = sig
    type ('a, 'b, 'c, 'd) t

    include Typerepable.S4 with type ('a, 'b, 'c, 'd) t := ('a, 'b, 'c, 'd) t

    val compute
      :  'a computation
      -> 'b computation
      -> 'c computation
      -> 'd computation
      -> ('a, 'b, 'c, 'd) t computation
  end

  module type S5 = sig
    type ('a, 'b, 'c, 'd, 'e) t

    include Typerepable.S5 with type ('a, 'b, 'c, 'd, 'e) t := ('a, 'b, 'c, 'd, 'e) t

    val compute
      :  'a computation
      -> 'b computation
      -> 'c computation
      -> 'd computation
      -> 'e computation
      -> ('a, 'b, 'c, 'd, 'e) t computation
  end

  val register0 : (module S) -> unit
  val register1 : (module S1) -> unit
  val register2 : (module S2) -> unit
  val register3 : (module S3) -> unit
  val register4 : (module S4) -> unit
  val register5 : (module S5) -> unit

  (* special less scary type when the type has no parameters *)
  val register : 'a Typerep.t -> 'a computation -> unit

  (*
     Essentially because we cannot talk about a variable of kind * -> k
     val register1 : 'a 't Typerep.t -> ('a computation -> 'a 't computation) -> unit
     ...
  *)
end

(* Implementing a new generic *)
module type S_implementation = sig
  include Extending

  (* raise using the current ident *)
  val raise_not_implemented : string -> 'a

  type implementation = { generic : 'a. 'a Typerep.t -> 'a computation }

  (*
     Standard case, find a extended_implementation, or look in the content
  *)
  val _using_extended_implementation
    :  implementation
    -> 'a Typerep.Named.t
    -> 'a Typerep.t lazy_t option
    -> 'a computation

  (*
     This function allows you more control on what you want to do
  *)
  val find_extended_implementation
    :  implementation
    -> 'a Typerep.Named.t
    -> 'a computation option
end

module type S = sig
  include Extending

  val of_typerep : 'a Typerep.t -> [ `generic of 'a computation ]

  module Computation : Computation with type 'a t = 'a t
end

module Make_S_implementation (X : sig
  type 'a t

  val name : string
  val required : Ident.t list
end) : S_implementation with type 'a t = 'a X.t = struct
  type 'a t = 'a X.t
  type 'a computation = 'a t

  include Type_generic_intf.M (struct
    type 'a t = 'a computation
  end)

  (* we do not use core since we are earlier in the dependencies graph *)
  module Uid_table = struct
    include Hashtbl.Make (Typename.Uid)

    let find table key =
      if Lazy.is_val table
      then (
        let table = Lazy.force table in
        try Some (find table key) with
        | Base.Not_found_s _ | Stdlib.Not_found -> None)
      else None
    ;;

    let check_dependencies = Ident.check_dependencies X.name X.required

    let replace table key value =
      check_dependencies key;
      replace (Lazy.force table) key value
    ;;

    let mem table key =
      if Lazy.is_val table
      then (
        let table = Lazy.force table in
        mem table key)
      else false
    ;;
  end

  let size = 256
  let table0 = lazy (Uid_table.create size)
  let table1 = lazy (Uid_table.create size)
  let table2 = lazy (Uid_table.create size)
  let table3 = lazy (Uid_table.create size)
  let table4 = lazy (Uid_table.create size)
  let table5 = lazy (Uid_table.create size)

  let is_registered uid =
    Uid_table.mem table0 uid
    || Uid_table.mem table1 uid
    || Uid_table.mem table2 uid
    || Uid_table.mem table3 uid
    || Uid_table.mem table4 uid
    || Uid_table.mem table5 uid
  ;;

  let ident = { Ident.name = X.name; implements = is_registered }

  module Find0 (T : Typerep.Named.T0) : sig
    val compute : unit -> T.named computation option
  end = struct
    let compute () =
      match Uid_table.find table0 (Typename.uid T.typename_of_t) with
      | None -> None
      | Some rep ->
        let module S = (val rep : S) in
        let witness = Typename.same_witness_exn S.typename_of_t T.typename_of_named in
        let module L =
          Type_equal.Lift (struct
            type 'a t = 'a computation
          end)
        in
        Some (Type_equal.conv (L.lift witness) S.compute)
    ;;
  end

  module Find1 (T : Typerep.Named.T1) : sig
    val compute : unit -> (T.a computation -> T.a T.named computation) option
  end = struct
    let compute () =
      match Uid_table.find table1 (Typename.uid T.typename_of_t) with
      | None -> None
      | Some rep ->
        let module S1 = (val rep : S1) in
        let module Conv =
          Typename.Same_witness_exn_1
            (S1)
            (struct
              type 'a t = 'a T.named

              let typename_of_t = T.typename_of_named
            end)
        in
        let module L =
          Type_equal.Lift (struct
            type 'a t = T.a computation -> 'a computation
          end)
        in
        Some (Type_equal.conv (L.lift Conv.(witness.eq)) S1.compute)
    ;;
  end

  module Find2 (T : Typerep.Named.T2) : sig
    val compute
      :  unit
      -> (T.a computation -> T.b computation -> (T.a, T.b) T.named computation) option
  end = struct
    let compute () =
      match Uid_table.find table2 (Typename.uid T.typename_of_t) with
      | None -> None
      | Some rep ->
        let module S2 = (val rep : S2) in
        let module Conv =
          Typename.Same_witness_exn_2
            (S2)
            (struct
              type ('a, 'b) t = ('a, 'b) T.named

              let typename_of_t = T.typename_of_named
            end)
        in
        let module L =
          Type_equal.Lift (struct
            type 'a t = T.a computation -> T.b computation -> 'a computation
          end)
        in
        Some (Type_equal.conv (L.lift Conv.(witness.eq)) S2.compute)
    ;;
  end

  module Find3 (T : Typerep.Named.T3) : sig
    val compute
      :  unit
      -> (T.a computation
          -> T.b computation
          -> T.c computation
          -> (T.a, T.b, T.c) T.named computation)
         option
  end = struct
    let compute () =
      match Uid_table.find table3 (Typename.uid T.typename_of_t) with
      | None -> None
      | Some rep ->
        let module S3 = (val rep : S3) in
        let module Conv =
          Typename.Same_witness_exn_3
            (S3)
            (struct
              type ('a, 'b, 'c) t = ('a, 'b, 'c) T.named

              let typename_of_t = T.typename_of_named
            end)
        in
        let module L =
          Type_equal.Lift (struct
            type 'a t =
              T.a computation -> T.b computation -> T.c computation -> 'a computation
          end)
        in
        Some (Type_equal.conv (L.lift Conv.(witness.eq)) S3.compute)
    ;;
  end

  module Find4 (T : Typerep.Named.T4) : sig
    val compute
      :  unit
      -> (T.a computation
          -> T.b computation
          -> T.c computation
          -> T.d computation
          -> (T.a, T.b, T.c, T.d) T.named computation)
         option
  end = struct
    let compute () =
      match Uid_table.find table4 (Typename.uid T.typename_of_t) with
      | None -> None
      | Some rep ->
        let module S4 = (val rep : S4) in
        let module Conv =
          Typename.Same_witness_exn_4
            (S4)
            (struct
              type ('a, 'b, 'c, 'd) t = ('a, 'b, 'c, 'd) T.named

              let typename_of_t = T.typename_of_named
            end)
        in
        let module L =
          Type_equal.Lift (struct
            type 'a t =
              T.a computation
              -> T.b computation
              -> T.c computation
              -> T.d computation
              -> 'a computation
          end)
        in
        Some (Type_equal.conv (L.lift Conv.(witness.eq)) S4.compute)
    ;;
  end

  module Find5 (T : Typerep.Named.T5) : sig
    val compute
      :  unit
      -> (T.a computation
          -> T.b computation
          -> T.c computation
          -> T.d computation
          -> T.e computation
          -> (T.a, T.b, T.c, T.d, T.e) T.named computation)
         option
  end = struct
    let compute () =
      match Uid_table.find table5 (Typename.uid T.typename_of_t) with
      | None -> None
      | Some rep ->
        let module S5 = (val rep : S5) in
        let module Conv =
          Typename.Same_witness_exn_5
            (S5)
            (struct
              type ('a, 'b, 'c, 'd, 'e) t = ('a, 'b, 'c, 'd, 'e) T.named

              let typename_of_t = T.typename_of_named
            end)
        in
        let module L =
          Type_equal.Lift (struct
            type 'a t =
              T.a computation
              -> T.b computation
              -> T.c computation
              -> T.d computation
              -> T.e computation
              -> 'a computation
          end)
        in
        Some (Type_equal.conv (L.lift Conv.(witness.eq)) S5.compute)
    ;;
  end

  let unit = Typename.static

  let register0 compute =
    let module S = (val compute : S) in
    let uid = Typename.uid S.typename_of_t in
    Uid_table.replace table0 uid compute
  ;;

  let register1 compute =
    let module S1 = (val compute : S1) in
    let uid = Typename.uid (S1.typename_of_t unit) in
    Uid_table.replace table1 uid compute
  ;;

  let register2 compute =
    let module S2 = (val compute : S2) in
    let uid = Typename.uid (S2.typename_of_t unit unit) in
    Uid_table.replace table2 uid compute
  ;;

  let register3 compute =
    let module S3 = (val compute : S3) in
    let uid = Typename.uid (S3.typename_of_t unit unit unit) in
    Uid_table.replace table3 uid compute
  ;;

  let register4 compute =
    let module S4 = (val compute : S4) in
    let uid = Typename.uid (S4.typename_of_t unit unit unit unit) in
    Uid_table.replace table4 uid compute
  ;;

  let register5 compute =
    let module S5 = (val compute : S5) in
    let uid = Typename.uid (S5.typename_of_t unit unit unit unit unit) in
    Uid_table.replace table5 uid compute
  ;;

  let register (type a) typerep_of_a compute =
    let module S = struct
      type t = a

      let typename_of_t = Typerep.typename_of_t typerep_of_a
      let typerep_of_t = typerep_of_a
      let compute = compute
    end
    in
    register0 (module S : S)
  ;;

  (* IMPLEMENTATION *)

  type implementation = { generic : 'a. 'a Typerep.t -> 'a computation }

  let find_extended_implementation (type a) aux = function
    | Typerep.Named.T0 rep ->
      let module T = (val rep : Typerep.Named.T0 with type t = a) in
      let module Custom = Find0 (T) in
      (match Custom.compute () with
       | Some custom ->
         let Type_equal.T = T.witness in
         Some (custom : a computation)
       | None -> None)
    | Typerep.Named.T1 rep ->
      let module T = (val rep : Typerep.Named.T1 with type t = a) in
      let module Custom = Find1 (T) in
      (match Custom.compute () with
       | Some custom ->
         let custom = (custom (aux.generic T.a) : T.a T.named computation) in
         let Type_equal.T = T.witness in
         Some (custom : a computation)
       | None -> None)
    | Typerep.Named.T2 rep ->
      let module T = (val rep : Typerep.Named.T2 with type t = a) in
      let module Custom = Find2 (T) in
      (match Custom.compute () with
       | Some custom ->
         let custom =
           (custom (aux.generic T.a) (aux.generic T.b) : (T.a, T.b) T.named computation)
         in
         let Type_equal.T = T.witness in
         Some (custom : a computation)
       | None -> None)
    | Typerep.Named.T3 rep ->
      let module T = (val rep : Typerep.Named.T3 with type t = a) in
      let module Custom = Find3 (T) in
      (match Custom.compute () with
       | Some custom ->
         let custom =
           (custom (aux.generic T.a) (aux.generic T.b) (aux.generic T.c)
             : (T.a, T.b, T.c) T.named computation)
         in
         let Type_equal.T = T.witness in
         Some (custom : a computation)
       | None -> None)
    | Typerep.Named.T4 rep ->
      let module T = (val rep : Typerep.Named.T4 with type t = a) in
      let module Custom = Find4 (T) in
      (match Custom.compute () with
       | Some custom ->
         let custom =
           (custom (aux.generic T.a) (aux.generic T.b) (aux.generic T.c) (aux.generic T.d)
             : (T.a, T.b, T.c, T.d) T.named computation)
         in
         let Type_equal.T = T.witness in
         Some (custom : a computation)
       | None -> None)
    | Typerep.Named.T5 rep ->
      let module T = (val rep : Typerep.Named.T5 with type t = a) in
      let module Custom = Find5 (T) in
      (match Custom.compute () with
       | Some custom ->
         let custom =
           (custom
              (aux.generic T.a)
              (aux.generic T.b)
              (aux.generic T.c)
              (aux.generic T.d)
              (aux.generic T.e)
             : (T.a, T.b, T.c, T.d, T.e) T.named computation)
         in
         let Type_equal.T = T.witness in
         Some (custom : a computation)
       | None -> None)
  ;;

  exception Not_implemented of string * string

  let raise_not_implemented string = raise (Not_implemented (X.name, string))

  let _using_extended_implementation aux rep content =
    match find_extended_implementation aux rep with
    | Some computation -> computation
    | None ->
      (match content with
       | Some (lazy content) -> aux.generic content
       | None ->
         let typename = Typerep.Named.typename_of_t rep in
         let name = Typename.Uid.name (Typename.uid typename) in
         raise_not_implemented name)
  ;;
end

module _ = Hashtbl.Make (Typename.Key)

module Make (X : sig
  type 'a t

  val name : string
  val required : Ident.t list

  include Computation with type 'a t := 'a t
end) =
struct
  module Computation = X
  include Make_S_implementation (X)

  module Memo = Typename.Table (struct
    type 'a t = 'a X.Named.t
  end)

  module Helper = Helper (Typerep) (Computation)

  let of_typerep rep =
    let context = X.Named.Context.create () in
    let memo_table = Memo.create 32 in
    let rec of_typerep : type a. a Typerep.t -> a t = function
      | Typerep.Int -> X.int
      | Typerep.Int32 -> X.int32
      | Typerep.Int64 -> X.int64
      | Typerep.Nativeint -> X.nativeint
      | Typerep.Char -> X.char
      | Typerep.Float -> X.float
      | Typerep.String -> X.string
      | Typerep.Bytes -> X.bytes
      | Typerep.Bool -> X.bool
      | Typerep.Unit -> X.unit
      | Typerep.Option rep -> X.option (of_typerep rep)
      | Typerep.List rep -> X.list (of_typerep rep)
      | Typerep.Array rep -> X.array (of_typerep rep)
      | Typerep.Lazy rep -> X.lazy_t (of_typerep rep)
      | Typerep.Ref rep -> X.ref_ (of_typerep rep)
      | Typerep.Function (dom, rng) -> X.function_ (of_typerep dom) (of_typerep rng)
      | Typerep.Tuple tuple ->
        (* do NOT write [X.tuple2 (of_typerep a) (of_typerep b)]
           because of_typerep can contain a side effect and [a] should be executed
           before [b] *)
        (match tuple with
         | Typerep.Tuple.T2 (a, b) ->
           let ra = of_typerep a in
           let rb = of_typerep b in
           X.tuple2 ra rb
         | Typerep.Tuple.T3 (a, b, c) ->
           let ra = of_typerep a in
           let rb = of_typerep b in
           let rc = of_typerep c in
           X.tuple3 ra rb rc
         | Typerep.Tuple.T4 (a, b, c, d) ->
           let ra = of_typerep a in
           let rb = of_typerep b in
           let rc = of_typerep c in
           let rd = of_typerep d in
           X.tuple4 ra rb rc rd
         | Typerep.Tuple.T5 (a, b, c, d, e) ->
           let ra = of_typerep a in
           let rb = of_typerep b in
           let rc = of_typerep c in
           let rd = of_typerep d in
           let re = of_typerep e in
           X.tuple5 ra rb rc rd re)
      | Typerep.Record record ->
        X.record (Helper.map_record { Helper.map = of_typerep } record)
      | Typerep.Variant variant ->
        X.variant (Helper.map_variant { Helper.map = of_typerep } variant)
      | Typerep.Named (named, content) ->
        let typename = Typerep.Named.typename_of_t named in
        (match Memo.find memo_table typename with
         | Some shared -> X.Named.get_wip_computation shared
         | None ->
           (match find_extended_implementation { generic = of_typerep } named with
            | Some computation -> computation
            | None ->
              (match content with
               | None ->
                 let name = Typename.Uid.name (Typename.uid typename) in
                 raise_not_implemented name
               | Some (lazy content) ->
                 if X.Named.share content
                 then (
                   let shared = X.Named.init context typename in
                   Memo.set memo_table typename shared;
                   let computation = of_typerep content in
                   X.Named.set_final_computation shared computation)
                 else of_typerep content)))
    in
    let computation = of_typerep rep in
    `generic computation
  ;;
end