1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
|
open Typerep_lib.Std
open Pre_core.Std
module Name = struct
include Int
let typerep_of_t = typerep_of_int
let make_fresh () =
let index = ref (-1) in
(fun () -> incr index; !index)
let incompatible = (-1)
end
module Variant = struct
module Kind = struct
type t =
| Polymorphic
| Usual
with sexp, typerep, bin_io
let is_polymorphic = function
| Polymorphic -> true
| Usual -> false
let equal a b =
match a with
| Polymorphic -> b = Polymorphic
| Usual -> b = Usual
end
module V1 = struct
type t = {
name : string;
repr : int;
} with sexp, bin_io, typerep
end
module V2 = struct
type t = {
label : string;
index : int;
ocaml_repr : int;
} with sexp, bin_io, typerep
end
include V2
let label t = t.label
let index t = t.index
let ocaml_repr t = t.ocaml_repr
let to_v1 kind t =
let name = t.label in
let repr = if Kind.is_polymorphic kind then t.ocaml_repr else t.index in
{ V1.name ; repr }
let of_v1 kind index this all v1 =
if Kind.is_polymorphic kind
then
{ label = v1.V1.name;
index;
ocaml_repr = v1.V1.repr; }
else
let ocaml_repr =
let no_arg = Farray.is_empty this in
let rec count pos acc =
if pos = index then acc
else
let _, args = Farray.get all pos in
let acc = if no_arg = Farray.is_empty args then succ acc else acc in
count (succ pos) acc
in
count 0 0
in
{ label = v1.V1.name;
index = (if index <> v1.V1.repr then assert false; index);
ocaml_repr;
}
module Option = struct
let none = {
index = 0;
ocaml_repr = 0;
label = "None";
}
let some = {
index = 1;
ocaml_repr = 0;
label = "Some";
}
end
end
module Variant_infos = struct
module V1 = struct
type t = {
kind : Variant.Kind.t;
} with sexp, bin_io, typerep
end
include V1
let equal t t' = Variant.Kind.equal t.kind t'.kind
end
module Field = struct
module V1 = struct
type t = string with sexp, bin_io, typerep
end
module V2 = struct
type t = {
label : string;
index : int;
} with sexp, bin_io, typerep
end
(* module V3 = struct
* type t = {
* label : string;
* index : int;
* is_mutable : bool;
* etc...
* }
* end *)
include V2
let label t = t.label
let index t = t.index
let to_v1 t = t.label
let of_v1 index label = {
label;
index;
}
end
module Record_infos = struct
module V1 = struct
type t = {
has_double_array_tag : bool;
} with sexp, bin_io, typerep
end
include V1
let equal t t' = t.has_double_array_tag = t'.has_double_array_tag
end
module T = struct
type t =
| Int
| Int32
| Int64
| Nativeint
| Char
| Float
| String
| Bool
| Unit
| Option of t
| List of t
| Array of t
| Lazy of t
| Ref of t
| Tuple of t Farray.t
| Record of Record_infos.t * (Field.t * t) Farray.t
| Variant of Variant_infos.t * (Variant.t * t Farray.t) Farray.t
| Named of Name.t * t option
with sexp, typerep
end
include T
type type_struct = t with sexp
let incompatible () = Named (Name.incompatible, None)
let get_variant_by_repr {Variant_infos.kind} cases repr =
if Variant.Kind.is_polymorphic kind
then
Farray.findi cases ~f:(fun _ ((variant, _) as case) ->
if Int.equal variant.Variant.ocaml_repr repr then Some case else None)
else
let length = Farray.length cases in
if repr < 0 || repr >= length then None else
let (variant, _) as case = Farray.get cases repr in
(if variant.Variant.index <> repr then assert false);
Some case
let get_variant_by_label _infos cases label =
Farray.findi cases ~f:(fun _ ((variant, _) as case) ->
if String.equal variant.Variant.label label then Some case else None)
let rec is_polymorphic_variant = function
| Named (_, Some content) -> is_polymorphic_variant content
| Variant ({Variant_infos.kind}, _) -> Variant.Kind.is_polymorphic kind
| _ -> false
let variant_args_of_type_struct ~arity str =
match arity with
| 0 ->
if str = Unit
then Farray.empty ()
else assert false
| 1 -> Farray.make1 str
| _ ->
match str with
| Tuple args -> args
| _ -> assert false (* ill formed ast *)
let type_struct_of_variant_args args =
match Farray.length args with
| 0 -> Unit
| 1 -> Farray.get args 0
| _ -> Tuple args
module Option_as_variant = struct
open Variant
let kind = Kind.Usual
let infos = {
Variant_infos.
kind;
}
let make some_type =
infos, Farray.make2
(Option.none, Farray.empty ())
(Option.some, Farray.make1 some_type)
end
let option_as_variant ~some = Option_as_variant.make some
class traverse =
object(self)
method iter t =
let f t = self#iter t in
match t with
| Int
| Int32
| Int64
| Nativeint
| Char
| Float
| String
| Bool
| Unit
-> ()
| Option t -> f t
| List t -> f t
| Array t -> f t
| Lazy t -> f t
| Ref t -> f t
| Tuple args ->
Farray.iter ~f args
| Record ((_:Record_infos.t), fields) ->
Farray.iter ~f:(fun ((_:Field.t), t) -> f t) fields
| Variant ((_:Variant_infos.t), cases) ->
Farray.iter ~f:(fun ((_:Variant.t), args) -> Farray.iter ~f args) cases
| Named (_, link) -> Option.iter link ~f
method map t =
let map_stable_snd ~f ((a, b) as t) =
let b' = f b in
if phys_equal b b' then t else (a, b')
in
let f t = self#map t in
match t with
| Int
| Int32
| Int64
| Nativeint
| Char
| Float
| String
| Bool
| Unit
-> t
| Option arg ->
let arg' = f arg in
if phys_equal arg arg' then t else Option arg'
| List arg ->
let arg' = f arg in
if phys_equal arg arg' then t else List arg'
| Array arg ->
let arg' = f arg in
if phys_equal arg arg' then t else Array arg'
| Lazy arg ->
let arg' = f arg in
if phys_equal arg arg' then t else Lazy arg'
| Ref arg ->
let arg' = f arg in
if phys_equal arg arg' then t else Ref arg'
| Tuple args ->
let args' = Farray.map_stable ~f args in
if phys_equal args args' then t else Tuple args'
| Record (infos, fields) ->
let fields' = Farray.map_stable ~f:(map_stable_snd ~f) fields in
if phys_equal fields fields' then t else Record (infos, fields')
| Variant (infos, cases) ->
let cases' = Farray.map_stable cases
~f:(map_stable_snd ~f:(Farray.map_stable ~f))
in
if phys_equal cases cases' then t else Variant (infos, cases')
| Named (name, link) ->
let link' = Option.map_stable ~f link in
if phys_equal link link' then t else Named (name, link')
end
module Raw = struct
module T = struct
type nonrec t = t with sexp
let compare = Pervasives.compare
let hash = Hashtbl.hash
end
include Hashable.Make(T)
end
module Named_utils(X:sig
type t with sexp_of
class traverse : object
method iter : t -> unit
method map : t -> t
end
val match_named : t -> [ `Named of Name.t * t option | `Other of t ]
val cons_named : Name.t -> t option -> t
end) = struct
let has_named t =
let module M = struct
exception Exists
end in
let exists = object
inherit X.traverse as super
method! iter t =
match X.match_named t with
| `Named _ -> raise M.Exists
| `Other t -> super#iter t
end in
try exists#iter t; false with M.Exists -> true
let remove_dead_links t =
let used = Name.Hash_set.create () in
let has_named = ref false in
let collect = object
inherit X.traverse as super
method! iter t =
super#iter t;
match X.match_named t with
| `Named (name, link) ->
has_named := true;
if Option.is_none link then Name.Hash_set.add used name
| `Other _ -> ()
end in
collect#iter t;
if not !has_named then t else begin
let map = object
inherit X.traverse as super
method! map t =
let t = super#map t in
match X.match_named t with
| `Named (name, Some arg) ->
if Name.Hash_set.mem used name then t else arg
| `Named (_, None) | `Other _ -> t
end in
map#map t
end
let alpha_conversion t =
if not (has_named t) then t else (* allocation optimization *)
let fresh_name = Name.make_fresh () in
let table = Name.Table.create () in
let rename i =
match Name.Table.find table i with
| Some i -> i
| None ->
let name = fresh_name () in
Name.Table.set table ~key:i ~data:name;
name
in
let rename = object
inherit X.traverse as super
method! map t =
match X.match_named t with
| `Named (name, arg) ->
let name' = rename name in
let t =
if Name.equal name name' then t else X.cons_named name' arg
in
super#map t
| `Other t -> super#map t
end in
rename#map t
exception Invalid_recursive_name of Name.t * X.t with sexp
let standalone_exn ~readonly (t:X.t) =
if not (has_named t) then t else (* allocation optimization *)
let local_table = Name.Table.create () in
let or_lookup name content =
match content with
| Some data ->
Name.Table.set local_table ~key:name ~data;
content
| None ->
match Name.Table.find local_table name with
| Some _ as content -> content
| None ->
match Name.Table.find readonly name with
| (Some data) as content ->
Name.Table.set local_table ~key:name ~data;
content
| None -> raise (Invalid_recursive_name (name, t))
in
let seen = Name.Hash_set.create () in
let enrich = object
inherit X.traverse as super
method! map t =
let t =
match X.match_named t with
| `Named (name, content) ->
if Name.Hash_set.mem seen name then begin
if Option.is_none content then t else
X.cons_named name None
end else begin
Name.Hash_set.add seen name;
let content' = or_lookup name content in
if phys_equal content content'
then t
else X.cons_named name content'
end
| `Other t -> t
in
super#map t
end in
enrich#map t
end
include Named_utils(struct
type t = type_struct with sexp_of
class traverse_non_rec = traverse
class traverse = traverse_non_rec
let match_named = function
| Named (name, link) -> `Named (name, link)
| t -> `Other t
let cons_named name contents = Named (name, contents)
end)
let reduce t =
let fresh_name = Name.make_fresh () in
let alias = Name.Table.create () in
let consing = Raw.Table.create () in
let share t =
match t with
| Named (name, None) -> begin
match Name.Table.find alias name with
| Some shared_name ->
if Name.equal name shared_name then t else Named (shared_name, None)
| None -> t
end
| Named (name, Some key) -> begin
match Raw.Table.find consing key with
| Some (shared_name, shared) ->
if not (Name.equal name shared_name) then
Name.Table.set alias ~key:name ~data:shared_name;
shared
| None ->
let shared = Named (name, None) in
let data = name, shared in
Raw.Table.set consing ~key ~data;
t
end
| (Record _ | Variant _) as key -> begin
match Raw.Table.find consing key with
| Some (_, shared) ->
shared
| None -> begin
let shared_name = fresh_name () in
let shared = Named (shared_name, None) in
let data = shared_name, shared in
Raw.Table.set consing ~key ~data;
Named (shared_name, Some key)
end
end
| Int
| Int32
| Int64
| Nativeint
| Char
| Float
| String
| Bool
| Unit
| Option _
| List _
| Array _
| Lazy _
| Ref _
| Tuple _
-> t
in
let share = object
inherit traverse as super
method! map t =
let t = super#map t in (* deep first *)
share t
end in
let shared = share#map t in
let reduced = remove_dead_links shared in
reduced
exception Invalid_recursive_typestruct of Name.t * t with sexp
let sort_variant_cases cases =
let cmp (variant, _) (variant', _) =
String.compare variant.Variant.label variant'.Variant.label
in
Farray.sort ~cmp cases
module Pairs = struct
module T = struct
type t = Name.t * Name.t with sexp
let compare (a, b) (a', b') =
let cmp = Name.compare a a' in
if cmp <> 0 then cmp else Name.compare b b'
let hash = Hashtbl.hash
end
include Hashable.Make(T)
end
let equivalent_array f a b =
let len_a = Farray.length a in
let len_b = Farray.length b in
if len_a <> len_b then false else
let rec aux index = if index = len_a then true else
f (Farray.get a index) (Farray.get b index) && aux (succ index)
in
aux 0
let are_equivalent a b =
let wip = Pairs.Table.create () in
let start_pair name name' =
Pairs.Table.set wip ~key:(name, name') ~data:`started
in
let finish_pair name name' result =
Pairs.Table.set wip ~key:(name, name') ~data:(`finished result)
in
let status name name' =
match Pairs.Table.find wip (name, name') with
| Some ((`started | `finished _) as status) -> status
| None -> `unknown
in
let table_a = Name.Table.create () in
let table_b = Name.Table.create () in
let or_lookup table name = function
| (Some data) as str -> Name.Table.set table ~key:name ~data ; str
| None -> Name.Table.find table name
in
let rec aux a b =
match a, b with
| Named (name, struct_a), Named (name', struct_b) -> begin
match status name name' with
| `unknown -> begin
let struct_a = or_lookup table_a name struct_a in
let struct_b = or_lookup table_b name struct_b in
match struct_a, struct_b with
| Some struct_a, Some struct_b ->
start_pair name name';
let res = aux struct_a struct_b in
finish_pair name name' res;
res
| Some _, None
| None, Some _
| None, None
-> false
end
| `started -> true
| `finished res -> res
end
| Named (name, struct_a), struct_b -> begin
let struct_a = or_lookup table_a name struct_a in
match struct_a with
| None -> false
| Some struct_a ->
aux struct_a struct_b
end
| struct_a, Named (name, struct_b) -> begin
let struct_b = or_lookup table_b name struct_b in
match struct_b with
| None -> false
| Some struct_b ->
aux struct_a struct_b
end
| Int, Int
| Int32, Int32
| Int64, Int64
| Nativeint, Nativeint
| Char, Char
| Float, Float
| String, String
| Bool, Bool
| Unit, Unit
-> true
| Option t, Option t'
| List t, List t'
| Array t, Array t'
| Lazy t, Lazy t'
| Ref t, Ref t'
-> aux t t'
| Tuple tys, Tuple tys' ->
equivalent_array aux tys tys'
| Record (infos, fields), Record (infos', fields') ->
Record_infos.equal infos infos' &&
let eq (field, t) (field', t') =
String.equal field.Field.label field'.Field.label
&& Int.equal field.Field.index field'.Field.index
&& aux t t'
in
equivalent_array eq fields fields'
| Variant (infos, cases), Variant (infos', cases') ->
Variant_infos.equal infos infos' &&
let is_polymorphic = Variant.Kind.is_polymorphic infos.Variant_infos.kind in
let cases = if is_polymorphic then sort_variant_cases cases else cases in
let cases' = if is_polymorphic then sort_variant_cases cases' else cases' in
let eq (variant, args) (variant', args') =
Int.equal variant.Variant.ocaml_repr variant'.Variant.ocaml_repr
&& String.equal variant.Variant.label variant'.Variant.label
&& equivalent_array aux args args'
in
equivalent_array eq cases cases'
| Int, _
| Int32, _
| Int64, _
| Nativeint, _
| Char, _
| Float, _
| String, _
| Bool, _
| Unit, _
| Option _, _
| List _, _
| Array _, _
| Lazy _, _
| Ref _, _
| Record _, _
| Variant _, _
| Tuple _, _
-> false
in
aux a b
let combine_array ~fail combine a b =
let len = Farray.length a in
if Farray.length b <> len then fail () else
Farray.init len ~f:(fun index ->
combine
(Farray.get a index)
(Farray.get b index)
)
module Incompatible_types = struct
(* these exception are used to create human readable error messages for
least_upper_bound. we use exception with sexp rather than an error monad because
this library does not depend on core, and dealing with exception is the easiest way
to plunge this library in a world using a error monad, as soon as there exists a
[try_with] function *)
exception Invalid_recursive_structure of t * t with sexp
exception Field_conflict of t * t * (Field.t * Field.t) with sexp
exception Types_conflict of t * t with sexp
end
let least_upper_bound_exn a b =
let open Incompatible_types in
let wip = Pairs.Table.create () in
let fresh_name = Name.make_fresh () in
let merge_named_pair name name' =
let merged_name = fresh_name () in
Pairs.Table.set wip ~key:(name, name') ~data:(`name merged_name);
merged_name
in
let status name name' =
match Pairs.Table.find wip (name, name') with
| Some ((`name _) as status) -> status
| None -> `unknown
in
let table_a = Name.Table.create () in
let table_b = Name.Table.create () in
let or_lookup table name = function
| (Some data) as str -> Name.Table.set table ~key:name ~data ; str
| None -> Name.Table.find table name
in
let rec aux a b =
let fail () = raise (Types_conflict (a, b)) in
match a, b with
| Named (name, struct_a), Named (name', struct_b) -> begin
match status name name' with
| `unknown -> begin
let struct_a = or_lookup table_a name struct_a in
let struct_b = or_lookup table_b name struct_b in
match struct_a, struct_b with
| Some struct_a, Some struct_b -> begin
let name = merge_named_pair name name' in
let content = aux struct_a struct_b in
Named (name, Some content)
end
| Some _, None
| None, Some _
| None, None
-> raise (Invalid_recursive_structure (a, b))
end
| `name name -> Named (name, None)
end
| Named (name, struct_a), struct_b -> begin
let struct_a = or_lookup table_a name struct_a in
match struct_a with
| None -> raise (Invalid_recursive_structure (a, b))
| Some struct_a ->
aux struct_a struct_b
end
| struct_a, Named (name, struct_b) -> begin
let struct_b = or_lookup table_b name struct_b in
match struct_b with
| None -> raise (Invalid_recursive_structure (a, b))
| Some struct_b ->
aux struct_a struct_b
end
| Int, Int
| Int32, Int32
| Int64, Int64
| Nativeint, Nativeint
| Char, Char
| Float, Float
| String, String
| Bool, Bool
| Unit, Unit
-> a
| Option t, Option t' -> Option (aux t t')
| List t, List t' -> List (aux t t')
| Array t, Array t' -> Array (aux t t')
| Lazy t, Lazy t' -> Lazy (aux t t')
| Ref t, Ref t' -> Ref (aux t t')
| Tuple tys, Tuple tys' ->
let args = combine_array ~fail aux tys tys' in
Tuple args
| Record (infos, fields), Record (infos', fields') ->
if Record_infos.equal infos infos'
then
let combine (field, t) (field', t') =
if
String.equal field.Field.label field'.Field.label
&& Int.equal field.Field.index field'.Field.index
then (field, (aux t t'))
else raise (Field_conflict (a, b, (field, field')))
in
let fields = combine_array ~fail combine fields fields' in
Record (infos, fields)
else fail ()
| Variant (infos_a, cases_a), Variant (infos_b, cases_b) ->
if Variant_infos.equal infos_a infos_b
then
match infos_a.Variant_infos.kind with
| Variant.Kind.Polymorphic -> begin
(* polymorphic variant may be merged if there is no conflict in hashing and
arguments are compatible *)
let repr_table = Int.Table.create () in
let iter_variants variants =
let len = Farray.length variants in
let rec iter index =
if index >= len then true
else begin
let (({Variant.label=name; ocaml_repr; index=_}, args) as init) =
(Farray.get variants index)
in
match Int.Table.find repr_table ocaml_repr with
| None ->
Int.Table.set repr_table ~key:ocaml_repr ~data:init;
iter (succ index)
| Some (({Variant.label=name'; ocaml_repr=_ ; index=_ } as variant)
, args') ->
if name <> name' then false else begin
let args = combine_array ~fail aux args args' in
let data = variant, args in
Int.Table.set repr_table ~key:ocaml_repr ~data;
iter (succ index)
end
end
in iter 0
in
if iter_variants cases_a && iter_variants cases_b then begin
let cases_merged =
Int.Table.to_init Farray.init repr_table ~f:(fun _ case -> case)
in
Variant (infos_a, cases_merged)
end else fail ()
end
| Variant.Kind.Usual -> begin
(* usual variant may be merged only if one is a prefix of the other and
arguments are compatible *)
let len_a = Farray.length cases_a in
let len_b = Farray.length cases_b in
let cases_merged = Farray.init (max len_a len_b) ~f:(fun index ->
let var_a =
if index < len_a then Some (Farray.get cases_a index) else None
in
let var_b =
if index < len_b then Some (Farray.get cases_b index) else None
in
match var_a, var_b with
| Some (variant_a, args_a), Some (variant_b, args_b) ->
if
Int.equal variant_a.Variant.ocaml_repr variant_b.Variant.ocaml_repr
&& String.equal variant_a.Variant.label variant_b.Variant.label
then
let args = combine_array ~fail aux args_a args_b in
variant_a, args
else
fail ()
| Some (variant, args), None ->
variant, args
| None, Some (variant, args) ->
variant, args
| None, None -> assert false
) in
Variant (infos_a, cases_merged)
end
else fail ()
| Int, _
| Int32, _
| Int64, _
| Nativeint, _
| Char, _
| Float, _
| String, _
| Bool, _
| Unit, _
| Option _, _
| List _, _
| Array _, _
| Lazy _, _
| Ref _, _
| Record _, _
| Variant _, _
| Tuple _, _
-> fail ()
in
aux a b
module type Typestructable = sig
type t
val typestruct_of_t : type_struct
end
module Internal_generic = Type_generic.Make(struct
type 'a t = type_struct
module Type_struct_variant = Variant
module Type_struct_field = Field
include Type_generic.Variant_and_record_intf.M(struct type nonrec 'a t = 'a t end)
let name = "typestruct"
let required = []
let int = Int
let int32 = Int32
let int64 = Int64
let nativeint = Nativeint
let char = Char
let float = Float
let string = String
let bool = Bool
let unit = Unit
let option str = Option str
let list str = List str
let array str = Array str
let lazy_t str = Lazy str
let ref_ str = Ref str
let tuple2 a b = Tuple (Farray.make2 a b)
let tuple3 a b c = Tuple (Farray.make3 a b c)
let tuple4 a b c d = Tuple (Farray.make4 a b c d)
let tuple5 a b c d e = Tuple (Farray.make5 a b c d e)
let function_ _ = assert false
let record record =
let infos =
let has_double_array_tag = Record.has_double_array_tag record in
{ Record_infos.
has_double_array_tag;
}
in
let fields = Farray.init (Record.length record) ~f:(fun index ->
match Record.field record index with
| Record.Field field ->
let label = Field.label field in
let type_struct = (Field.traverse field : type_struct) in
{ Type_struct_field.label ; index }, type_struct
)
in
Record (infos, fields)
let variant variant =
let infos =
let polymorphic = Variant.is_polymorphic variant in
let kind =
Type_struct_variant.Kind.(if polymorphic then Polymorphic else Usual)
in
{ Variant_infos.
kind;
}
in
let tags = Farray.init (Variant.length variant) ~f:(fun index ->
match Variant.tag variant index with
| Variant.Tag tag ->
let label = Tag.label tag in
let index = Tag.index tag in
let ocaml_repr = Tag.ocaml_repr tag in
let arity = Tag.arity tag in
let variant = {
Type_struct_variant.
label;
ocaml_repr;
index;
} in
let str = Tag.traverse tag in
let args = variant_args_of_type_struct ~arity str in
variant, args
)
in
Variant (infos, tags)
module Named = struct
module Context = struct
type t = {
fresh_name : unit -> Name.t;
}
let create () = {
fresh_name = Name.make_fresh ();
}
end
type 'a t = Name.t
let init context _name =
context.Context.fresh_name ()
let get_wip_computation shared_name = Named (shared_name, None)
let set_final_computation shared_name str = Named (shared_name, Some str)
let share : type a. a Typerep.t -> bool = function
| Typerep.Int -> false
| Typerep.Int32 -> false
| Typerep.Int64 -> false
| Typerep.Nativeint -> false
| Typerep.Char -> false
| Typerep.Float -> false
| Typerep.String -> false
| Typerep.Bool -> false
| Typerep.Unit -> false
| Typerep.Option _ -> false
| Typerep.List _ -> false
| Typerep.Array _ -> false
| Typerep.Lazy _ -> false
| Typerep.Ref _ -> false
| Typerep.Function _ -> true
| Typerep.Tuple _ -> true
| Typerep.Record _ -> true
| Typerep.Variant _ -> true
| Typerep.Named _ -> false
end
end)
module Generic = struct
include Internal_generic
let of_typerep_fct rep =
let `generic str = Internal_generic.of_typerep rep in
remove_dead_links str
let of_typerep rep = `generic (of_typerep_fct rep)
end
let of_typerep = Generic.of_typerep_fct
let sexp_of_typerep rep = sexp_of_t (of_typerep rep)
module Diff = struct
module Path = struct
(* the path leading to the variant. succession of field names, variant names,
or string representation of base types. for tuple with use 'f0', 'f1', etc. *)
type t = string list with sexp
end
module Compatibility = struct
type t = [
| `Backward_compatible
| `Break
] with sexp
end
module Atom = struct
(* [str * str] means [old * new] *)
type t =
| Update of type_struct * type_struct
| Add_field of (Field.t * type_struct)
| Remove_field of (Field.t * type_struct)
| Update_field of (Field.t * type_struct) * (Field.t * type_struct)
| Add_variant of (Compatibility.t * Variant.t * type_struct Farray.t)
| Remove_variant of (Variant.t * type_struct Farray.t)
| Update_variant of
(Variant.t * type_struct Farray.t)
* (Variant.t * type_struct Farray.t)
with sexp
end
type t = (Path.t * Atom.t) list with sexp
let is_empty = List.is_empty
(*
The diff is done such as the length of the path associated with atoms is maximal
*)
let compute a b =
let wip = Pairs.Table.create () in
let start_pair name name' =
Pairs.Table.set wip ~key:(name, name') ~data:`started
in
let status name name' =
match Pairs.Table.find wip (name, name') with
| Some (`started as status) -> status
| None -> `unknown
in
let table_a = Name.Table.create () in
let table_b = Name.Table.create () in
let or_lookup table name = function
| (Some data) as str -> Name.Table.set table ~key:name ~data ; str
| None -> Name.Table.find table name
in
let diffs = Queue.create () in
let enqueue path diff = Queue.push (path, diff) diffs in
let rec aux_list :
'a. add:('a -> unit)
-> remove:('a -> unit)
-> compute:(('a * 'a list) -> ('a * 'a list) -> 'a list * 'a list)
-> 'a list -> 'a list -> unit
= fun ~add ~remove ~compute a b ->
match a, b with
| [], [] -> ()
| [], _::_ -> List.iter ~f:add b
| _::_, [] -> List.iter ~f:remove a
| hd::tl, hd'::tl' ->
let tl, tl' = compute (hd, tl) (hd', tl') in
aux_list ~add ~remove ~compute tl tl'
in
let aux_farray :
'a. add:('a -> unit)
-> remove:('a -> unit)
-> compute:(('a * 'a list) -> ('a * 'a list) -> 'a list * 'a list)
-> 'a Farray.t -> 'a Farray.t -> unit
= fun ~add ~remove ~compute a b ->
aux_list ~add ~remove ~compute (Farray.to_list a) (Farray.to_list b)
in
let rec aux path a b =
match a, b with
| Named (name_a, struct_a), Named (name_b, struct_b) -> begin
match status name_a name_b with
| `unknown -> begin
let struct_a = or_lookup table_a name_a struct_a in
let struct_b = or_lookup table_b name_b struct_b in
match struct_a, struct_b with
| Some struct_a, Some struct_b ->
start_pair name_a name_b;
aux path struct_a struct_b
| Some _, None
| None, Some _
| None, None -> enqueue path (Atom.Update (a, b))
end
| `started -> ()
end
| Named (name, struct_a), struct_b -> begin
let struct_a = or_lookup table_a name struct_a in
match struct_a with
| None -> enqueue path (Atom.Update (a, b))
| Some struct_a ->
aux path struct_a struct_b
end
| struct_a, Named (name, struct_b) -> begin
let struct_b = or_lookup table_b name struct_b in
match struct_b with
| None -> enqueue path (Atom.Update (a, b))
| Some struct_b ->
aux path struct_a struct_b
end
| Int, Int
| Int32, Int32
| Int64, Int64
| Nativeint, Nativeint
| Char, Char
| Float, Float
| String, String
| Bool, Bool
| Unit, Unit
-> ()
| Option a, Option b -> aux ("option"::path) a b
| List a, List b -> aux ("list"::path) a b
| Array a, Array b -> aux ("array"::path) a b
| Lazy a, Lazy b -> aux ("lazy"::path) a b
| Ref a, Ref b -> aux ("ref"::path) a b
| Tuple tys, Tuple tys' ->
let arity = Farray.length tys in
let arity' = Farray.length tys' in
if arity <> arity'
then enqueue path (Atom.Update (a, b))
else
(* since arity = arity', add and remove are never called *)
let add _ = assert false in
let remove _ = assert false in
let index = ref 0 in
let compute (ty, tl) (ty', tl') =
let path = ("f"^(string_of_int !index)) :: path in
aux path ty ty';
incr index;
tl, tl'
in
aux_farray ~add ~remove ~compute tys tys'
| Record (infos, fields), Record (infos', fields') ->
if not (Record_infos.equal infos infos')
then enqueue path (Atom.Update (a, b)) else begin
let add hd = enqueue path (Atom.Add_field hd) in
let remove hd = enqueue path (Atom.Remove_field hd) in
let update a b = enqueue path (Atom.Update_field (a, b)) in
let labels fields =
let set = String.Hash_set.create () in
let iter (field, _) = String.Hash_set.add set field.Field.label in
Farray.iter ~f:iter fields;
set
in
let labels_a = labels fields in
let labels_b = labels fields' in
let compute ((field, str) as hd, tl) ((field', str') as hd', tl') =
let field = field.Field.label in
let field' = field'.Field.label in
if String.equal field field'
then begin
aux (field::path) str str';
tl, tl'
end else begin
match
String.Hash_set.mem labels_b field,
String.Hash_set.mem labels_a field' with
| false, false
| true, true -> update hd hd'; tl, tl'
| true, false -> add hd'; (hd::tl), tl'
| false, true -> remove hd; tl, (hd'::tl')
end
in
aux_farray ~add ~remove ~compute fields fields'
end
| Variant ({Variant_infos.kind} as infos, cases), Variant (infos', cases') ->
if not (Variant_infos.equal infos infos')
then enqueue path (Atom.Update (a, b)) else begin
let is_polymorphic = Variant.Kind.is_polymorphic kind in
let cases = if is_polymorphic then sort_variant_cases cases else cases in
let cases' = if is_polymorphic then sort_variant_cases cases' else cases' in
let add compatible (a,b) = enqueue path (Atom.Add_variant (compatible, a, b)) in
let remove hd = enqueue path (Atom.Remove_variant hd) in
let update a b = enqueue path (Atom.Update_variant (a, b)) in
let labels cases =
let set = String.Hash_set.create () in
let iter (variant, _) = String.Hash_set.add set variant.Variant.label in
Farray.iter ~f:iter cases;
set
in
let labels_a = labels cases in
let labels_b = labels cases' in
let compute ((variant, args) as hd, tl) ((variant', args') as hd', tl') =
let label = variant.Variant.label in
let label' = variant'.Variant.label in
let arity = Farray.length args in
let arity' = Farray.length args' in
match String.equal label label', arity = arity' with
| true, true -> begin
Farray.iter2_exn args args'
~f:(let path = label::path in fun str str' -> aux path str str');
tl, tl'
end
| true, false -> begin
update hd hd';
tl, tl'
end
| false, (true | false) -> begin
match
String.Hash_set.mem labels_b label,
String.Hash_set.mem labels_a label' with
| false, false
| true, true -> update hd hd'; tl, tl'
| true, false ->
let compatible =
if is_polymorphic || List.is_empty tl'
then `Backward_compatible
else `Break
in
add compatible hd'; (hd::tl), tl'
| false, true -> remove hd; tl, (hd'::tl')
end
in
aux_farray ~add:(add `Backward_compatible) ~remove ~compute cases cases'
end
| Int, _
| Int32, _
| Int64, _
| Nativeint, _
| Char, _
| Float, _
| String, _
| Bool, _
| Unit, _
| Option _, _
| List _, _
| Array _, _
| Lazy _, _
| Ref _, _
| Tuple _, _
| Record _, _
| Variant _, _
-> enqueue path (Atom.Update (a, b))
in
aux [] a b;
let diffs = Queue.fold (fun acc x -> x::acc) [] diffs in
let f (path, diff) = List.rev path, diff in
List.rev_map ~f diffs
let is_bin_prot_subtype ~subtype:a ~supertype:b =
let diffs = compute a b in
let for_all = function
| _, Atom.Add_variant (compatible, _, _) -> compatible = `Backward_compatible
| _ -> false
in
List.for_all ~f:for_all diffs
let incompatible_changes t =
let filter (_, atom) =
let open Atom in
match atom with
| Add_variant (compatible, _, _) -> compatible = `Break
| Update _
| Add_field _
| Remove_field _
| Update_field _
| Remove_variant _
| Update_variant _
-> true
in
List.rev_filter ~f:filter t
end
module To_typerep = struct
exception Unbound_name of t * Name.t with sexp
exception Unsupported_tuple of t with sexp
let to_typerep : t -> Typerep.packed = fun type_struct ->
let table = Name.Table.create () in
let rec aux = function
| Int -> Typerep.T typerep_of_int
| Int32 -> Typerep.T typerep_of_int32
| Int64 -> Typerep.T typerep_of_int64
| Nativeint -> Typerep.T typerep_of_nativeint
| Char -> Typerep.T typerep_of_char
| Float -> Typerep.T typerep_of_float
| String -> Typerep.T typerep_of_string
| Bool -> Typerep.T typerep_of_bool
| Unit -> Typerep.T typerep_of_unit
| Option t ->
let Typerep.T rep = aux t in
Typerep.T (typerep_of_option rep)
| List t ->
let Typerep.T rep = aux t in
Typerep.T (typerep_of_list rep)
| Array t ->
let Typerep.T rep = aux t in
Typerep.T (typerep_of_array rep)
| Lazy t ->
let Typerep.T rep = aux t in
Typerep.T (typerep_of_lazy_t rep)
| Ref t ->
let Typerep.T rep = aux t in
Typerep.T (typerep_of_ref rep)
| (Tuple args) as type_struct -> begin
match Farray.to_array ~f:(fun _ x -> x) args with
| [| a ; b |] ->
let Typerep.T a = aux a in
let Typerep.T b = aux b in
Typerep.T (typerep_of_tuple2 a b)
| [| a ; b ; c |] ->
let Typerep.T a = aux a in
let Typerep.T b = aux b in
let Typerep.T c = aux c in
Typerep.T (typerep_of_tuple3 a b c)
| [| a ; b ; c ; d |] ->
let Typerep.T a = aux a in
let Typerep.T b = aux b in
let Typerep.T c = aux c in
let Typerep.T d = aux d in
Typerep.T (typerep_of_tuple4 a b c d)
| [| a ; b ; c ; d ; e |] ->
let Typerep.T a = aux a in
let Typerep.T b = aux b in
let Typerep.T c = aux c in
let Typerep.T d = aux d in
let Typerep.T e = aux e in
Typerep.T (typerep_of_tuple5 a b c d e)
| _ -> raise (Unsupported_tuple type_struct)
end
| Record (infos, fields) ->
let len = Farray.length fields in
let typed_fields = Farray.to_array fields ~f:(fun index (field, str) ->
if index <> field.Field.index then assert false;
let label = field.Field.label in
let Typerep.T typerep_of_field = aux str in
let get obj =
let cond = Obj.is_block obj && Obj.size obj = len in
if not cond then assert false;
(* [Obj.field] works on float array *)
Obj.obj (Obj.field obj index)
in
let field = {
Typerep.Field_internal.
label;
rep = typerep_of_field;
index;
tyid = Typename.create ();
get;
} in
Typerep.Record_internal.Field (Typerep.Field.internal_use_only field)
)
in
let module Typename_of_t = Make_typename.Make0(struct
type t = Obj.t
let name = "dynamic record"
end)
in
let typename = Typerep.Named.typename_of_t Typename_of_t.named in
let has_double_array_tag = infos.Record_infos.has_double_array_tag in
let create { Typerep.Record_internal.get } =
let t =
let tag =
if has_double_array_tag
then Obj.double_array_tag
else 0
in
Obj.new_block tag len
in
let iter = function
| Typerep.Record_internal.Field field ->
let index = Typerep.Field.index field in
let value = get field in
Obj.set_field t index (Obj.repr value)
in
Array.iter ~f:iter typed_fields;
t
in
let record = Typerep.Record.internal_use_only {
Typerep.Record_internal.
typename;
fields = typed_fields;
has_double_array_tag;
create;
} in
let typerep_of_t =
Typerep.Named ((Typename_of_t.named,
(Some (lazy (Typerep.Record record)))))
in
Typerep.T typerep_of_t
| Variant ({Variant_infos.kind}, tags_str) ->
let polymorphic = Variant.Kind.is_polymorphic kind in
let typed_tags = Farray.to_array tags_str ~f:(fun index (variant, args) ->
let type_struct = type_struct_of_variant_args args in
let Typerep.T typerep_of_tag = aux type_struct in
let index = (if index <> variant.Variant.index then assert false); index in
let ocaml_repr = variant.Variant.ocaml_repr in
let arity = Farray.length args in
let label = variant.Variant.label in
let create_polymorphic =
if arity = 0
then Typerep.Tag_internal.Const (Obj.repr ocaml_repr)
else Typerep.Tag_internal.Args (fun value ->
let block = Obj.new_block 0 2 in
Obj.set_field block 0 (Obj.repr ocaml_repr);
Obj.set_field block 1 (Obj.repr value);
block
)
in
let create_usual =
match arity with
| 0 -> Typerep.Tag_internal.Const (Obj.repr ocaml_repr)
| 1 -> Typerep.Tag_internal.Args (fun value ->
let block = Obj.new_block ocaml_repr 1 in
Obj.set_field block 0 (Obj.repr value);
block)
| n -> Typerep.Tag_internal.Args (fun value ->
let args = Obj.repr value in
if not (Obj.size args = n) then assert false;
let block = Obj.dup args in
Obj.set_tag block ocaml_repr;
block)
in
let create = if polymorphic then create_polymorphic else create_usual in
let tyid =
(fun (type exist) (typerep_of_tag:exist Typerep.t) ->
if arity = 0
then
let Type_equal.T =
Typerep.same_witness_exn typerep_of_tuple0 typerep_of_tag
in
(typename_of_tuple0 : exist Typename.t)
else
(Typename.create () : exist Typename.t)
) typerep_of_tag
in
let tag = {
Typerep.Tag_internal.
label;
rep = typerep_of_tag;
arity;
index;
ocaml_repr;
tyid;
create;
} in
Typerep.Variant_internal.Tag (Typerep.Tag.internal_use_only tag)
) in
let module Typename_of_t = Make_typename.Make0(struct
type t = Obj.t
let name = "dynamic variant"
end) in
let typename = Typerep.Named.typename_of_t Typename_of_t.named in
let value_polymorphic =
let map =
let map exists =
match exists with
| Typerep.Variant_internal.Tag tag ->
let ocaml_repr = Typerep.Tag.ocaml_repr tag in
ocaml_repr, exists
in
Flat_map.Flat_int_map.of_array_map ~f:map typed_tags
in
(fun obj ->
let repr = Typerep_obj.repr_of_poly_variant (Obj.obj obj) in
let no_arg = Obj.is_int obj in
match Flat_map.Flat_int_map.find map repr with
| None -> assert false
| Some (Typerep.Variant_internal.Tag tag) ->
let arity = Typerep.Tag.arity tag in
let value =
match no_arg with
| true ->
if arity = 0
then Obj.repr value_tuple0
else assert false
| false ->
let size = Obj.size obj in
if size <> 2 then assert false;
let value = Obj.field obj 1 in
if arity = 1
then value
else begin
if Obj.is_int value then assert false;
if Obj.size value <> arity then assert false;
value
end
in
Typerep.Variant_internal.Value (tag, Obj.obj value)
)
in
let value_usual =
let bound = Array.length typed_tags in
let collect pred_args =
let rec aux acc index =
if index >= bound then Farray.of_list (List.rev acc)
else
match typed_tags.(index) with
| (Typerep.Variant_internal.Tag tag) as exists ->
let arity = Typerep.Tag.arity tag in
let acc =
if pred_args arity then exists::acc else acc
in
aux acc (succ index)
in
aux [] 0
in
let without_args = collect (fun i -> i = 0) in
let with_args = collect (fun i -> i > 0) in
let find_tag ~no_arg idx =
let table = if no_arg then without_args else with_args in
if idx < 0 || idx >= Farray.length table then assert false;
Farray.get table idx
in
(fun obj ->
match Obj.is_int obj with
| true -> begin
match find_tag ~no_arg:true (Obj.obj obj) with
| Typerep.Variant_internal.Tag tag ->
let Type_equal.T =
Typename.same_witness_exn
(Typerep.Tag.tyid tag)
typename_of_tuple0
in
let arity = Typerep.Tag.arity tag in
if arity <> 0 then assert false;
Typerep.Variant_internal.Value (tag, value_tuple0)
end
| false ->
let idx = Obj.tag obj in
match find_tag ~no_arg:false idx with
| Typerep.Variant_internal.Tag tag ->
let arity = Typerep.Tag.arity tag in
if arity <> Obj.size obj then assert false;
let value =
if arity = 1
then Obj.field obj 0
else
let block = Obj.dup obj in
Obj.set_tag block 0; (* tuple *)
block
in
Typerep.Variant_internal.Value (tag, Obj.obj value)
)
in
let value = if polymorphic then value_polymorphic else value_usual in
let variant = Typerep.Variant.internal_use_only {
Typerep.Variant_internal.
typename;
tags = typed_tags;
polymorphic;
value;
} in
let typerep_of_t =
Typerep.Named ((Typename_of_t.named,
(Some (lazy (Typerep.Variant variant)))))
in
Typerep.T typerep_of_t
| Named (name, content) ->
match Name.Table.find table name with
| Some content -> content
| None ->
let module T = struct
(*
let [t] be the type represented by this named type_struct
this type will be equal to the existential type returned by the call to
aux performed on the content.
*)
type t
let name = string_of_int name
end in
let module Named = Make_typename.Make0(T) in
let content =
match content with
| Some content -> content
| None ->
raise (Unbound_name (type_struct, name))
in
let release_content_ref = ref (`aux_content content) in
let typerep_of_t = Typerep.Named (Named.named, Some (lazy (
match !release_content_ref with
| `aux_content content ->
let Typerep.T typerep_of_content = aux content in
let rep = (fun (type content) (rep:content Typerep.t) ->
(Obj.magic (rep : content Typerep.t) : T.t Typerep.t)
) typerep_of_content
in
release_content_ref := `typerep rep;
rep
| `typerep rep -> rep
))) in
let data = Typerep.T typerep_of_t in
Name.Table.set table ~key:name ~data;
data
in
aux type_struct
end
let to_typerep = To_typerep.to_typerep
module Versioned = struct
module Version = struct
type t = [
| `v0
| `v1
| `v2
| `v3
| `v4
] with bin_io, sexp, typerep
let v1 = `v1
let v2 = `v2
let v3 = `v3
let v4 = `v4
end
exception Not_downgradable of Sexp.t with sexp
module type V_sig = sig
type t
with sexp, bin_io, typerep
val serialize : type_struct -> t
val unserialize : t -> type_struct
end
module V0 : V_sig = struct
type t =
| Unit
with sexp, bin_io, typerep
let serialize = function
| T.Unit -> Unit
| str -> raise (Not_downgradable (T.sexp_of_t str))
let unserialize = function
| Unit -> T.Unit
end
module V1 : V_sig = struct
type t =
| Int
| Int32
| Int64
| Nativeint
| Char
| Float
| String
| Bool
| Unit
| Option of t
| List of t
| Array of t
| Lazy of t
| Ref of t
| Record of (Field.V1.t * t) Farray.t
| Tuple of t Farray.t
| Variant of Variant.Kind.t * (Variant.V1.t * t Farray.t) Farray.t
with sexp, bin_io, typerep
let rec serialize = function
| T.Int -> Int
| T.Int32 -> Int32
| T.Int64 -> Int64
| T.Nativeint -> Nativeint
| T.Char -> Char
| T.Float -> Float
| T.String -> String
| T.Bool -> Bool
| T.Unit -> Unit
| T.Option t -> Option (serialize t)
| T.List t -> List (serialize t)
| T.Array t -> Array (serialize t)
| T.Lazy t -> Lazy (serialize t)
| T.Ref t -> Ref (serialize t)
| T.Record (infos, fields) as str ->
if infos.Record_infos.has_double_array_tag
then raise (Not_downgradable (T.sexp_of_t str));
let map (field, t) =
let field = Field.to_v1 field in
field, serialize t in
let fields = Farray.map ~f:map fields in
Record fields
| T.Tuple args -> Tuple (Farray.map ~f:serialize args)
| T.Variant (info, tags) ->
let kind = info.Variant_infos.kind in
let map (variant, t) =
let variant_v1 = Variant.to_v1 kind variant in
variant_v1, Farray.map ~f:serialize t
in
Variant (kind, Farray.map ~f:map tags)
| (T.Named _) as str -> raise (Not_downgradable (T.sexp_of_t str))
let rec unserialize = function
| Int -> T.Int
| Int32 -> T.Int32
| Int64 -> T.Int64
| Nativeint -> T.Nativeint
| Char -> T.Char
| Float -> T.Float
| String -> T.String
| Bool -> T.Bool
| Unit -> T.Unit
| Option t -> T.Option (unserialize t)
| List t -> T.List (unserialize t)
| Array t -> T.Array (unserialize t)
| Lazy t -> T.Lazy (unserialize t)
| Ref t -> T.Ref (unserialize t)
| Record fields ->
let infos = { Record_infos.
(* this is wrong is some cases, if so the exec should upgrade to >= v3 *)
has_double_array_tag = false;
} in
let mapi index (field, t) =
let field = Field.of_v1 index field in
field, unserialize t
in
let fields = Farray.mapi ~f:mapi fields in
T.Record (infos, fields)
| Tuple args -> T.Tuple (Farray.map ~f:unserialize args)
| Variant (kind, tags) ->
let infos = { Variant_infos.kind } in
let mapi index (variant_v1, t) =
let variant = Variant.of_v1 kind index t tags variant_v1 in
variant, Farray.map ~f:unserialize t
in
T.Variant (infos, Farray.mapi ~f:mapi tags)
end
(* Adding Named *)
module V2 : V_sig = struct
type t =
| Int
| Int32
| Int64
| Nativeint
| Char
| Float
| String
| Bool
| Unit
| Option of t
| List of t
| Array of t
| Lazy of t
| Ref of t
| Record of (Field.V1.t * t) Farray.t
| Tuple of t Farray.t
| Variant of Variant.Kind.t * (Variant.V1.t * t Farray.t) Farray.t
| Named of Name.t * t option
with sexp, bin_io, typerep
let rec serialize = function
| T.Int -> Int
| T.Int32 -> Int32
| T.Int64 -> Int64
| T.Nativeint -> Nativeint
| T.Char -> Char
| T.Float -> Float
| T.String -> String
| T.Bool -> Bool
| T.Unit -> Unit
| T.Option t -> Option (serialize t)
| T.List t -> List (serialize t)
| T.Array t -> Array (serialize t)
| T.Lazy t -> Lazy (serialize t)
| T.Ref t -> Ref (serialize t)
| T.Record (infos, fields) as str ->
if infos.Record_infos.has_double_array_tag
then raise (Not_downgradable (T.sexp_of_t str));
let map (field, t) =
let field = Field.to_v1 field in
field, serialize t
in
let fields = Farray.map ~f:map fields in
Record fields
| T.Tuple args -> Tuple (Farray.map ~f:serialize args)
| T.Variant (info, tags) ->
let kind = info.Variant_infos.kind in
let map (variant, t) =
let variant_v1 = Variant.to_v1 kind variant in
variant_v1, Farray.map ~f:serialize t
in
Variant (kind, Farray.map ~f:map tags)
| T.Named (name, content) ->
let content = Option.map ~f:serialize content in
Named (name, content)
let rec unserialize = function
| Int -> T.Int
| Int32 -> T.Int32
| Int64 -> T.Int64
| Nativeint -> T.Nativeint
| Char -> T.Char
| Float -> T.Float
| String -> T.String
| Bool -> T.Bool
| Unit -> T.Unit
| Option t -> T.Option (unserialize t)
| List t -> T.List (unserialize t)
| Array t -> T.Array (unserialize t)
| Lazy t -> T.Lazy (unserialize t)
| Ref t -> T.Ref (unserialize t)
| Record fields ->
let infos = { Record_infos.
(* this is wrong is some cases, if so the exec should upgrade to >= v3 *)
has_double_array_tag = false;
} in
let mapi index (field, t) =
let field = Field.of_v1 index field in
field, unserialize t
in
let fields = Farray.mapi ~f:mapi fields in
T.Record (infos, fields)
| Tuple args -> T.Tuple (Farray.map ~f:unserialize args)
| Variant (kind, tags) ->
let infos = { Variant_infos.kind } in
let mapi index (variant_v1, t) =
let variant = Variant.of_v1 kind index t tags variant_v1 in
variant, Farray.map ~f:unserialize t
in
T.Variant (infos, Farray.mapi ~f:mapi tags)
| Named (name, content) ->
let content = Option.map ~f:unserialize content in
T.Named (name, content)
end
(* Adding meta-info to the records and variants *)
module V3 : V_sig = struct
type t =
| Int
| Int32
| Int64
| Nativeint
| Char
| Float
| String
| Bool
| Unit
| Option of t
| List of t
| Array of t
| Lazy of t
| Ref of t
| Record of Record_infos.V1.t * (Field.V1.t * t) Farray.t
| Tuple of t Farray.t
| Variant of Variant_infos.V1.t * (Variant.V1.t * t Farray.t) Farray.t
| Named of Name.t * t option
with sexp, bin_io, typerep
let rec serialize = function
| T.Int -> Int
| T.Int32 -> Int32
| T.Int64 -> Int64
| T.Nativeint -> Nativeint
| T.Char -> Char
| T.Float -> Float
| T.String -> String
| T.Bool -> Bool
| T.Unit -> Unit
| T.Option t -> Option (serialize t)
| T.List t -> List (serialize t)
| T.Array t -> Array (serialize t)
| T.Lazy t -> Lazy (serialize t)
| T.Ref t -> Ref (serialize t)
| T.Record (infos, fields) ->
let map (field, t) =
let field = Field.to_v1 field in
field, serialize t
in
let fields = Farray.map ~f:map fields in
Record (infos, fields)
| T.Tuple args -> Tuple (Farray.map ~f:serialize args)
| T.Variant (infos, tags) ->
let kind = infos.Variant_infos.kind in
let map (variant, t) =
let variant_v1 = Variant.to_v1 kind variant in
variant_v1, Farray.map ~f:serialize t
in
Variant (infos, Farray.map ~f:map tags)
| T.Named (name, content) ->
let content = Option.map ~f:serialize content in
Named (name, content)
let rec unserialize = function
| Int -> T.Int
| Int32 -> T.Int32
| Int64 -> T.Int64
| Nativeint -> T.Nativeint
| Char -> T.Char
| Float -> T.Float
| String -> T.String
| Bool -> T.Bool
| Unit -> T.Unit
| Option t -> T.Option (unserialize t)
| List t -> T.List (unserialize t)
| Array t -> T.Array (unserialize t)
| Lazy t -> T.Lazy (unserialize t)
| Ref t -> T.Ref (unserialize t)
| Record (infos, fields) ->
let mapi index (field, t) =
let field = Field.of_v1 index field in
field, unserialize t
in
let fields = Farray.mapi ~f:mapi fields in
T.Record (infos, fields)
| Tuple args -> T.Tuple (Farray.map ~f:unserialize args)
| Variant (infos, tags) ->
let kind = infos.Variant_infos.kind in
let mapi index (variant_v1, t) =
let variant = Variant.of_v1 kind index t tags variant_v1 in
variant, Farray.map ~f:unserialize t
in
T.Variant (infos, Farray.mapi ~f:mapi tags)
| Named (name, content) ->
let content = Option.map ~f:unserialize content in
T.Named (name, content)
end
(* Switching to Variant.V2 and Field.V2.t *)
module V4 : V_sig with type t = T.t = struct
type t = T.t =
| Int
| Int32
| Int64
| Nativeint
| Char
| Float
| String
| Bool
| Unit
| Option of t
| List of t
| Array of t
| Lazy of t
| Ref of t
| Tuple of t Farray.t
| Record of Record_infos.V1.t * (Field.V2.t * t) Farray.t
| Variant of Variant_infos.V1.t * (Variant.V2.t * t Farray.t) Farray.t
| Named of Name.t * t option
with sexp, bin_io
let typerep_of_t = T.typerep_of_t
let typename_of_t = T.typename_of_t
(* *)
let serialize t = t
let unserialize t = t
end
type t = [
| `V0 of V0.t
| `V1 of V1.t
| `V2 of V2.t
| `V3 of V3.t
| `V4 of V4.t
] with bin_io, sexp, typerep
let aux_unserialize = function
| `V0 v0 -> V0.unserialize v0
| `V1 v1 -> V1.unserialize v1
| `V2 v2 -> V2.unserialize v2
| `V3 v3 -> V3.unserialize v3
| `V4 v4 -> V4.unserialize v4
let serialize ~version v4 =
match version with
| `v0 -> `V0 (V0.serialize v4)
| `v1 -> `V1 (V1.serialize v4)
| `v2 -> `V2 (V2.serialize v4)
| `v3 -> `V3 (V3.serialize v4)
| `v4 -> `V4 (V4.serialize v4)
let version = function
| `V0 _ -> `v0
| `V1 _ -> `v1
| `V2 _ -> `v2
| `V3 _ -> `v3
| `V4 _ -> `v4
let change_version ~version:requested t =
if version t = requested
then t
else serialize ~version:requested (aux_unserialize t)
module Diff = struct
let compute a b = Diff.compute (aux_unserialize a) (aux_unserialize b)
let is_bin_prot_subtype ~subtype ~supertype =
let subtype = aux_unserialize subtype in
let supertype = aux_unserialize supertype in
Diff.is_bin_prot_subtype ~subtype ~supertype
end
let is_polymorphic_variant t = is_polymorphic_variant (aux_unserialize t)
let least_upper_bound_exn t1 t2 =
let supremum = least_upper_bound_exn (aux_unserialize t1) (aux_unserialize t2) in
serialize ~version:(version t1) supremum
let unserialize = aux_unserialize
let to_typerep t =
To_typerep.to_typerep (aux_unserialize t)
let of_typerep ~version rep =
let type_struct = of_typerep rep in
serialize ~version type_struct
end
type 'a typed_t = t
let recreate_dynamically_typerep_for_test (type a) (rep:a Typerep.t) =
let Typerep.T typerep = to_typerep (of_typerep rep) in
(fun (type b) (typerep:b Typerep.t) ->
(* this Obj.magic is used to be able to add more testing, basically we use the ocaml
runtime to deal with value create with the Obj module during the execution of
[Type_struct.to_typerep] and allow ocaml to treat them as value of the right type
as they had been generated by some functions whose code had been known at compile
time *)
(Obj.magic (typerep:b Typerep.t) : a Typerep.t)
) typerep
|