1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
import sys
from _typeshed import SupportsRichComparisonT
from collections.abc import Callable, Hashable, Iterable, Sequence
from decimal import Decimal
from fractions import Fraction
from typing import Any, Literal, NamedTuple, SupportsFloat, TypeVar
from typing_extensions import Self, TypeAlias
__all__ = [
"StatisticsError",
"fmean",
"geometric_mean",
"mean",
"harmonic_mean",
"pstdev",
"pvariance",
"stdev",
"variance",
"median",
"median_low",
"median_high",
"median_grouped",
"mode",
"multimode",
"NormalDist",
"quantiles",
]
if sys.version_info >= (3, 10):
__all__ += ["covariance", "correlation", "linear_regression"]
if sys.version_info >= (3, 13):
__all__ += ["kde", "kde_random"]
# Most functions in this module accept homogeneous collections of one of these types
_Number: TypeAlias = float | Decimal | Fraction
_NumberT = TypeVar("_NumberT", float, Decimal, Fraction)
# Used in mode, multimode
_HashableT = TypeVar("_HashableT", bound=Hashable)
class StatisticsError(ValueError): ...
if sys.version_info >= (3, 11):
def fmean(data: Iterable[SupportsFloat], weights: Iterable[SupportsFloat] | None = None) -> float: ...
else:
def fmean(data: Iterable[SupportsFloat]) -> float: ...
def geometric_mean(data: Iterable[SupportsFloat]) -> float: ...
def mean(data: Iterable[_NumberT]) -> _NumberT: ...
if sys.version_info >= (3, 10):
def harmonic_mean(data: Iterable[_NumberT], weights: Iterable[_Number] | None = None) -> _NumberT: ...
else:
def harmonic_mean(data: Iterable[_NumberT]) -> _NumberT: ...
def median(data: Iterable[_NumberT]) -> _NumberT: ...
def median_low(data: Iterable[SupportsRichComparisonT]) -> SupportsRichComparisonT: ...
def median_high(data: Iterable[SupportsRichComparisonT]) -> SupportsRichComparisonT: ...
if sys.version_info >= (3, 11):
def median_grouped(data: Iterable[SupportsFloat], interval: SupportsFloat = 1.0) -> float: ...
else:
def median_grouped(data: Iterable[_NumberT], interval: _NumberT | float = 1) -> _NumberT | float: ...
def mode(data: Iterable[_HashableT]) -> _HashableT: ...
def multimode(data: Iterable[_HashableT]) -> list[_HashableT]: ...
def pstdev(data: Iterable[_NumberT], mu: _NumberT | None = None) -> _NumberT: ...
def pvariance(data: Iterable[_NumberT], mu: _NumberT | None = None) -> _NumberT: ...
def quantiles(
data: Iterable[_NumberT], *, n: int = 4, method: Literal["inclusive", "exclusive"] = "exclusive"
) -> list[_NumberT]: ...
def stdev(data: Iterable[_NumberT], xbar: _NumberT | None = None) -> _NumberT: ...
def variance(data: Iterable[_NumberT], xbar: _NumberT | None = None) -> _NumberT: ...
class NormalDist:
def __init__(self, mu: float = 0.0, sigma: float = 1.0) -> None: ...
@property
def mean(self) -> float: ...
@property
def median(self) -> float: ...
@property
def mode(self) -> float: ...
@property
def stdev(self) -> float: ...
@property
def variance(self) -> float: ...
@classmethod
def from_samples(cls, data: Iterable[SupportsFloat]) -> Self: ...
def samples(self, n: int, *, seed: Any | None = None) -> list[float]: ...
def pdf(self, x: float) -> float: ...
def cdf(self, x: float) -> float: ...
def inv_cdf(self, p: float) -> float: ...
def overlap(self, other: NormalDist) -> float: ...
def quantiles(self, n: int = 4) -> list[float]: ...
if sys.version_info >= (3, 9):
def zscore(self, x: float) -> float: ...
def __eq__(self, x2: object) -> bool: ...
def __add__(self, x2: float | NormalDist) -> NormalDist: ...
def __sub__(self, x2: float | NormalDist) -> NormalDist: ...
def __mul__(self, x2: float) -> NormalDist: ...
def __truediv__(self, x2: float) -> NormalDist: ...
def __pos__(self) -> NormalDist: ...
def __neg__(self) -> NormalDist: ...
__radd__ = __add__
def __rsub__(self, x2: float | NormalDist) -> NormalDist: ...
__rmul__ = __mul__
def __hash__(self) -> int: ...
if sys.version_info >= (3, 12):
def correlation(
x: Sequence[_Number], y: Sequence[_Number], /, *, method: Literal["linear", "ranked"] = "linear"
) -> float: ...
elif sys.version_info >= (3, 10):
def correlation(x: Sequence[_Number], y: Sequence[_Number], /) -> float: ...
if sys.version_info >= (3, 10):
def covariance(x: Sequence[_Number], y: Sequence[_Number], /) -> float: ...
class LinearRegression(NamedTuple):
slope: float
intercept: float
if sys.version_info >= (3, 11):
def linear_regression(
regressor: Sequence[_Number], dependent_variable: Sequence[_Number], /, *, proportional: bool = False
) -> LinearRegression: ...
elif sys.version_info >= (3, 10):
def linear_regression(regressor: Sequence[_Number], dependent_variable: Sequence[_Number], /) -> LinearRegression: ...
if sys.version_info >= (3, 13):
_Kernel: TypeAlias = Literal[
"normal",
"gauss",
"logistic",
"sigmoid",
"rectangular",
"uniform",
"triangular",
"parabolic",
"epanechnikov",
"quartic",
"biweight",
"triweight",
"cosine",
]
def kde(
data: Sequence[float], h: float, kernel: _Kernel = "normal", *, cumulative: bool = False
) -> Callable[[float], float]: ...
def kde_random(
data: Sequence[float],
h: float,
kernel: _Kernel = "normal",
*,
seed: int | float | str | bytes | bytearray | None = None, # noqa: Y041
) -> Callable[[], float]: ...
|