1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2023 Addiva Elektronik
* Author: Tobias Waldekranz <tobias@waldekranz.com>
*/
#include <blk.h>
#include <blkmap.h>
#include <dm.h>
#include <asm/test.h>
#include <dm/test.h>
#include <test/test.h>
#include <test/ut.h>
#define BLKSZ 0x200
struct mapping {
int src;
int cnt;
int dst;
};
const struct mapping unordered_mapping[] = {
{ 0, 1, 3 },
{ 1, 3, 0 },
{ 4, 2, 6 },
{ 6, 2, 4 },
{ 0, 0, 0 }
};
const struct mapping identity_mapping[] = {
{ 0, 8, 0 },
{ 0, 0, 0 }
};
static char identity[8 * BLKSZ];
static char unordered[8 * BLKSZ];
static char buffer[8 * BLKSZ];
static void mkblob(void *base, const struct mapping *m)
{
int nr;
for (; m->cnt; m++) {
for (nr = 0; nr < m->cnt; nr++) {
memset(base + (m->dst + nr) * BLKSZ,
m->src + nr, BLKSZ);
}
}
}
static int dm_test_blkmap_read(struct unit_test_state *uts)
{
struct udevice *dev, *blk;
const struct mapping *m;
ut_assertok(blkmap_create("rdtest", &dev));
ut_assertok(blk_get_from_parent(dev, &blk));
/* Generate an ordered and an unordered pattern in memory */
mkblob(unordered, unordered_mapping);
mkblob(identity, identity_mapping);
/* Create a blkmap that cancels out the disorder */
for (m = unordered_mapping; m->cnt; m++) {
ut_assertok(blkmap_map_mem(dev, m->src, m->cnt,
unordered + m->dst * BLKSZ));
}
/* Read out the data via the blkmap device to another area,
* and verify that it matches the ordered pattern.
*/
ut_asserteq(8, blk_read(blk, 0, 8, buffer));
ut_assertok(memcmp(buffer, identity, sizeof(buffer)));
ut_assertok(blkmap_destroy(dev));
return 0;
}
DM_TEST(dm_test_blkmap_read, 0);
static int dm_test_blkmap_write(struct unit_test_state *uts)
{
struct udevice *dev, *blk;
const struct mapping *m;
ut_assertok(blkmap_create("wrtest", &dev));
ut_assertok(blk_get_from_parent(dev, &blk));
/* Generate an ordered and an unordered pattern in memory */
mkblob(unordered, unordered_mapping);
mkblob(identity, identity_mapping);
/* Create a blkmap that mimics the disorder */
for (m = unordered_mapping; m->cnt; m++) {
ut_assertok(blkmap_map_mem(dev, m->src, m->cnt,
buffer + m->dst * BLKSZ));
}
/* Write the ordered data via the blkmap device to another
* area, and verify that the result matches the unordered
* pattern.
*/
ut_asserteq(8, blk_write(blk, 0, 8, identity));
ut_assertok(memcmp(buffer, unordered, sizeof(buffer)));
ut_assertok(blkmap_destroy(dev));
return 0;
}
DM_TEST(dm_test_blkmap_write, 0);
static int dm_test_blkmap_slicing(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(blkmap_create("slicetest", &dev));
ut_assertok(blkmap_map_mem(dev, 8, 8, NULL));
/* Can't overlap on the low end */
ut_asserteq(-EBUSY, blkmap_map_mem(dev, 4, 5, NULL));
/* Can't be inside */
ut_asserteq(-EBUSY, blkmap_map_mem(dev, 10, 2, NULL));
/* Can't overlap on the high end */
ut_asserteq(-EBUSY, blkmap_map_mem(dev, 15, 4, NULL));
/* But we should be able to add slices right before and
* after
*/
ut_assertok(blkmap_map_mem(dev, 4, 4, NULL));
ut_assertok(blkmap_map_mem(dev, 16, 4, NULL));
ut_assertok(blkmap_destroy(dev));
return 0;
}
DM_TEST(dm_test_blkmap_slicing, 0);
static int dm_test_blkmap_creation(struct unit_test_state *uts)
{
struct udevice *first, *second;
ut_assertok(blkmap_create("first", &first));
/* Can't have two "first"s */
ut_asserteq(-EBUSY, blkmap_create("first", &second));
/* But "second" should be fine */
ut_assertok(blkmap_create("second", &second));
/* Once "first" is destroyed, we should be able to create it
* again
*/
ut_assertok(blkmap_destroy(first));
ut_assertok(blkmap_create("first", &first));
ut_assertok(blkmap_destroy(first));
ut_assertok(blkmap_destroy(second));
return 0;
}
DM_TEST(dm_test_blkmap_creation, 0);
static int dm_test_cmd_blkmap(struct unit_test_state *uts)
{
ulong loadaddr = env_get_hex("loadaddr", 0);
struct udevice *dev;
ut_assertok(run_command("blkmap info", 0));
ut_assert_console_end();
ut_assertok(run_command("blkmap create ramdisk", 0));
ut_assert_nextline("Created \"ramdisk\"");
ut_assert_console_end();
ut_assertnonnull((dev = blkmap_from_label("ramdisk")));
ut_assertok(run_commandf("blkmap map ramdisk 0 800 mem 0x%lx", loadaddr));
ut_assert_nextline("Block 0x0+0x800 mapped to 0x%lx", loadaddr);
ut_assert_console_end();
ut_assertok(run_command("blkmap info", 0));
ut_assert_nextline("Device 0: Vendor: U-Boot Rev: 1.0 Prod: blkmap");
ut_assert_nextline(" Type: Hard Disk");
ut_assert_nextline(" Capacity: 1.0 MB = 0.0 GB (2048 x 512)");
ut_assert_console_end();
ut_assertok(run_command("blkmap get ramdisk dev devnum", 0));
ut_asserteq(dev_seq(dev), env_get_hex("devnum", 0xdeadbeef));
ut_assertok(run_command("blkmap destroy ramdisk", 0));
ut_assert_nextline("Destroyed \"ramdisk\"");
ut_assert_console_end();
ut_assertok(run_command("blkmap info", 0));
ut_assert_console_end();
return 0;
}
DM_TEST(dm_test_cmd_blkmap, UTF_CONSOLE);
|