1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
"""
The util_indexable module defines ``IndexableWalker`` which is a powerful
way to iterate through nested Python containers.
RelatedWork:
* [PypiDictDigger]_
References:
.. [PypiDictDigger] https://pypi.org/project/dict_digger/
.. [PypiDeepDiff] https://pypi.org/project/deepdiff/
"""
from math import isclose
from collections.abc import Generator
# from collections.abc import Iterable
class IndexableWalker(Generator):
"""
Traverses through a nested tree-liked indexable structure.
Generates a path and value to each node in the structure. The path is a
list of indexes which if applied in order will reach the value.
The ``__setitem__`` method can be used to modify a nested value based on the
path returned by the generator.
When generating values, you can use "send" to prevent traversal of a
particular branch.
RelatedWork:
* https://pypi.org/project/python-benedict/ - implements a dictionary
subclass with similar nested indexing abilities.
Attributes:
data (dict | list | tuple): the wrapped indexable data
dict_cls (Tuple[type]):
the types that should be considered dictionary mappings for the
purpose of nested iteration. Defaults to ``dict``.
list_cls (Tuple[type]):
the types that should be considered list-like for the purposes
of nested iteration. Defaults to ``(list, tuple)``.
Example:
>>> import ubelt as ub
>>> # Given Nested Data
>>> data = {
>>> 'foo': {'bar': 1},
>>> 'baz': [{'biz': 3}, {'buz': [4, 5, 6]}],
>>> }
>>> # Create an IndexableWalker
>>> walker = ub.IndexableWalker(data)
>>> # We iterate over the data as if it was flat
>>> # ignore the <want> string due to order issues on older Pythons
>>> # xdoctest: +IGNORE_WANT
>>> for path, val in walker:
>>> print(path)
['foo']
['baz']
['baz', 0]
['baz', 1]
['baz', 1, 'buz']
['baz', 1, 'buz', 0]
['baz', 1, 'buz', 1]
['baz', 1, 'buz', 2]
['baz', 0, 'biz']
['foo', 'bar']
>>> # We can use "paths" as keys to getitem into the walker
>>> path = ['baz', 1, 'buz', 2]
>>> val = walker[path]
>>> assert val == 6
>>> # We can use "paths" as keys to setitem into the walker
>>> assert data['baz'][1]['buz'][2] == 6
>>> walker[path] = 7
>>> assert data['baz'][1]['buz'][2] == 7
>>> # We can use "paths" as keys to delitem into the walker
>>> assert data['baz'][1]['buz'][1] == 5
>>> del walker[['baz', 1, 'buz', 1]]
>>> assert data['baz'][1]['buz'][1] == 7
Example:
>>> # Create nested data
>>> # xdoctest: +REQUIRES(module:numpy)
>>> import numpy as np
>>> import ubelt as ub
>>> data = ub.ddict(lambda: int)
>>> data['foo'] = ub.ddict(lambda: int)
>>> data['bar'] = np.array([1, 2, 3])
>>> data['foo']['a'] = 1
>>> data['foo']['b'] = np.array([1, 2, 3])
>>> data['foo']['c'] = [1, 2, 3]
>>> data['baz'] = 3
>>> print('data = {}'.format(ub.repr2(data, nl=True)))
>>> # We can walk through every node in the nested tree
>>> walker = ub.IndexableWalker(data)
>>> for path, value in walker:
>>> print('walk path = {}'.format(ub.repr2(path, nl=0)))
>>> if path[-1] == 'c':
>>> # Use send to prevent traversing this branch
>>> got = walker.send(False)
>>> # We can modify the value based on the returned path
>>> walker[path] = 'changed the value of c'
>>> print('data = {}'.format(ub.repr2(data, nl=True)))
>>> assert data['foo']['c'] == 'changed the value of c'
Example:
>>> # Test sending false for every data item
>>> import ubelt as ub
>>> data = {1: [1, 2, 3], 2: [1, 2, 3]}
>>> walker = ub.IndexableWalker(data)
>>> # Sending false means you wont traverse any further on that path
>>> num_iters_v1 = 0
>>> for path, value in walker:
>>> print('[v1] walk path = {}'.format(ub.repr2(path, nl=0)))
>>> walker.send(False)
>>> num_iters_v1 += 1
>>> num_iters_v2 = 0
>>> for path, value in walker:
>>> # When we dont send false we walk all the way down
>>> print('[v2] walk path = {}'.format(ub.repr2(path, nl=0)))
>>> num_iters_v2 += 1
>>> assert num_iters_v1 == 2
>>> assert num_iters_v2 == 8
Example:
>>> # Test numpy
>>> # xdoctest: +REQUIRES(CPython)
>>> # xdoctest: +REQUIRES(module:numpy)
>>> import ubelt as ub
>>> import numpy as np
>>> # By default we don't recurse into ndarrays because they
>>> # Are registered as an indexable class
>>> data = {2: np.array([1, 2, 3])}
>>> walker = ub.IndexableWalker(data)
>>> num_iters = 0
>>> for path, value in walker:
>>> print('walk path = {}'.format(ub.repr2(path, nl=0)))
>>> num_iters += 1
>>> assert num_iters == 1
>>> # Currently to use top-level ndarrays, you need to extend what the
>>> # list class is. This API may change in the future to be easier
>>> # to work with.
>>> data = np.random.rand(3, 5)
>>> walker = ub.IndexableWalker(data, list_cls=(list, tuple, np.ndarray))
>>> num_iters = 0
>>> for path, value in walker:
>>> print('walk path = {}'.format(ub.repr2(path, nl=0)))
>>> num_iters += 1
>>> assert num_iters == 3 + 3 * 5
"""
def __init__(self, data, dict_cls=(dict,), list_cls=(list, tuple)):
self.data = data
self.dict_cls = dict_cls
self.list_cls = list_cls
self.indexable_cls = self.dict_cls + self.list_cls
self._walk_gen = None
def __iter__(self):
"""
Iterates through the indexable ``self.data``
Can send a False flag to prevent a branch from being traversed
Returns:
Generator[Tuple[List, Any], Any, Any]:
path (List): list of index operations to arrive at the value
value (Any): the value at the path
"""
# Calling iterate multiple times will clobber the internal state
self._walk_gen = self._walk()
return self._walk_gen
def __next__(self):
"""
returns next item from this generator
Returns:
Any
"""
if self._walk_gen is None:
self._walk_gen = self._walk()
return next(self._walk_gen)
# TODO: maybe we implement a map function?
def send(self, arg):
"""
send(arg) -> send 'arg' into generator,
return next yielded value or raise StopIteration.
"""
# Note: this will error if called before __next__
self._walk_gen.send(arg)
def throw(self, type=None, value=None, traceback=None):
"""
throw(typ[,val[,tb]]) -> raise exception in generator,
return next yielded value or raise StopIteration.
"""
raise StopIteration
def __setitem__(self, path, value):
"""
Set nested value by path
Args:
path (List): list of indexes into the nested structure
value (Any): new value
"""
d = self.data
# note: slice unpack seems faster in 3.9 at least, dont change
# ~/misc/tests/python/bench_unpack.py
prefix, key = path[:-1], path[-1]
# *prefix, key = path
for k in prefix:
d = d[k]
d[key] = value
def __getitem__(self, path):
"""
Get nested value by path
Args:
path (List): list of indexes into the nested structure
Returns:
Any: value
"""
d = self.data
prefix, key = path[:-1], path[-1]
# *prefix, key = path
for k in prefix:
d = d[k]
return d[key]
def __delitem__(self, path):
"""
Remove nested value by path
Note:
It can be dangerous to use this while iterating (because we may try
to descend into a deleted location) or on leaf items that are
list-like (because the indexes of all subsequent items will be
modified).
Args:
path (List): list of indexes into the nested structure.
The item at the last index will be removed.
"""
d = self.data
prefix, key = path[:-1], path[-1]
# *prefix, key = path
for k in prefix:
d = d[k]
del d[key]
def _walk(self, data=None, prefix=[]):
"""
Defines the underlying generator used by IndexableWalker
Yields:
Tuple[List, Any] | None:
path (List) - a "path" through the nested data structure
value (Any) - the value indexed by that "path".
Can also yield None in the case that `send` is called on the
generator.
"""
if data is None: # pragma: nobranch
data = self.data
stack = [(data, prefix)]
while stack:
_data, _prefix = stack.pop()
# Create an items iterable of depending on the indexable data type
if isinstance(_data, self.list_cls):
items = enumerate(_data)
elif isinstance(_data, self.dict_cls):
items = _data.items()
else:
raise TypeError(type(_data))
for key, value in items:
# Yield the full path to this position and its value
path = _prefix + [key]
message = yield path, value
# If the value at this path is also indexable, then continue
# the traversal, unless the False message was explicitly sent
# by the caller.
if message is False:
# Because the `send` method will return the next value,
# we yield a dummy value so we don't clobber the next
# item in the traversal.
yield None
else:
if isinstance(value, self.indexable_cls):
stack.append((value, path))
def allclose(self, other, rel_tol=1e-9, abs_tol=0.0, return_info=False):
"""
Walks through this and another nested data structures and checks if
everything is roughly the same.
Args:
other (IndexableWalker):
a wrapped nested indexable item to compare against
rel_tol (float):
maximum difference for being considered "close", relative to the
magnitude of the input values
abs_tol (float):
maximum difference for being considered "close", regardless of the
magnitude of the input values
return_info (bool, default=False): if true, return extra info dict
Returns:
bool | Tuple[bool, Dict] :
A boolean result if ``return_info`` is false, otherwise a tuple of
the boolean result and an "info" dict containing detailed results
indicating what matched and what did not.
Example:
>>> import ubelt as ub
>>> items1 = ub.IndexableWalker({
>>> 'foo': [1.222222, 1.333],
>>> 'bar': 1,
>>> 'baz': [],
>>> })
>>> items2 = ub.IndexableWalker({
>>> 'foo': [1.22222, 1.333],
>>> 'bar': 1,
>>> 'baz': [],
>>> })
>>> flag, return_info = items1.allclose(items2, return_info=True)
>>> print('return_info = {}'.format(ub.repr2(return_info, nl=1)))
>>> print('flag = {!r}'.format(flag))
>>> for p1, v1, v2 in return_info['faillist']:
>>> v1_ = items1[p1]
>>> print('*fail p1, v1, v2 = {}, {}, {}'.format(p1, v1, v2))
>>> for p1 in return_info['passlist']:
>>> v1_ = items1[p1]
>>> print('*pass p1, v1_ = {}, {}'.format(p1, v1_))
>>> assert not flag
>>> import ubelt as ub
>>> items1 = ub.IndexableWalker({
>>> 'foo': [1.0000000000000000000000001, 1.],
>>> 'bar': 1,
>>> 'baz': [],
>>> })
>>> items2 = ub.IndexableWalker({
>>> 'foo': [0.9999999999999999, 1.],
>>> 'bar': 1,
>>> 'baz': [],
>>> })
>>> flag, return_info = items1.allclose(items2, return_info=True)
>>> print('return_info = {}'.format(ub.repr2(return_info, nl=1)))
>>> print('flag = {!r}'.format(flag))
>>> assert flag
Example:
>>> import ubelt as ub
>>> flag, return_info = ub.IndexableWalker([]).allclose(ub.IndexableWalker([]), return_info=True)
>>> print('return_info = {!r}'.format(return_info))
>>> print('flag = {!r}'.format(flag))
>>> assert flag
Example:
>>> import ubelt as ub
>>> flag = ub.IndexableWalker([]).allclose(ub.IndexableWalker([]), return_info=False)
>>> print('flag = {!r}'.format(flag))
>>> assert flag
Example:
>>> import ubelt as ub
>>> flag, return_info = ub.IndexableWalker([]).allclose(ub.IndexableWalker([1]), return_info=True)
>>> print('return_info = {!r}'.format(return_info))
>>> print('flag = {!r}'.format(flag))
>>> assert not flag
Example:
>>> # xdoctest: +REQUIRES(module:numpy)
>>> import ubelt as ub
>>> import numpy as np
>>> a = np.random.rand(3, 5)
>>> b = a + 1
>>> wa = ub.IndexableWalker(a, list_cls=(np.ndarray,))
>>> wb = ub.IndexableWalker(b, list_cls=(np.ndarray,))
>>> flag, return_info = wa.allclose(wb, return_info=True)
>>> print('return_info = {!r}'.format(return_info))
>>> print('flag = {!r}'.format(flag))
>>> assert not flag
>>> a = np.random.rand(3, 5)
>>> b = a.copy() + 1e-17
>>> wa = ub.IndexableWalker([a], list_cls=(np.ndarray, list))
>>> wb = ub.IndexableWalker([b], list_cls=(np.ndarray, list))
>>> flag, return_info = wa.allclose(wb, return_info=True)
>>> assert flag
>>> print('return_info = {!r}'.format(return_info))
>>> print('flag = {!r}'.format(flag))
"""
walker1 = self
walker2 = other
flat_items1 = [
(path, value) for path, value in walker1
if not isinstance(value, walker1.indexable_cls) or len(value) == 0]
flat_items2 = [
(path, value) for path, value in walker2
if not isinstance(value, walker1.indexable_cls) or len(value) == 0]
flat_items1 = sorted(flat_items1)
flat_items2 = sorted(flat_items2)
if len(flat_items1) != len(flat_items2):
info = {
'faillist': ['length mismatch']
}
final_flag = False
else:
passlist = []
faillist = []
for t1, t2 in zip(flat_items1, flat_items2):
p1, v1 = t1
p2, v2 = t2
assert p1 == p2, 'paths to the nested items should be the same'
flag = (v1 == v2)
if not flag:
if isinstance(v1, float) and isinstance(v2, float):
if isclose(v1, v2, rel_tol=rel_tol, abs_tol=abs_tol):
flag = True
if flag:
passlist.append(p1)
else:
faillist.append((p1, v1, v2))
final_flag = len(faillist) == 0
info = {
'passlist': passlist,
'faillist': faillist,
}
if return_info:
info.update({
'walker1': walker1,
'walker2': walker2,
})
return final_flag, info
else:
return final_flag
def indexable_allclose(items1, items2, rel_tol=1e-9, abs_tol=0.0, return_info=False):
"""
Walks through two nested data structures and ensures that everything is
roughly the same.
NOTE:
Deprecated. Instead use:
ub.IndexableWalker(items1).allclose(ub.IndexableWalker(items2))
Args:
items1 (dict | list | tuple):
a nested indexable item
items2 (dict | list | tuple):
a nested indexable item
rel_tol (float):
maximum difference for being considered "close", relative to the
magnitude of the input values
abs_tol (float):
maximum difference for being considered "close", regardless of the
magnitude of the input values
return_info (bool, default=False): if true, return extra info
Returns:
bool | Tuple[bool, Dict] :
A boolean result if ``return_info`` is false, otherwise a tuple of
the boolean result and an "info" dict containing detailed results
indicating what matched and what did not.
Example:
>>> import ubelt as ub
>>> items1 = {
>>> 'foo': [1.222222, 1.333],
>>> 'bar': 1,
>>> 'baz': [],
>>> }
>>> items2 = {
>>> 'foo': [1.22222, 1.333],
>>> 'bar': 1,
>>> 'baz': [],
>>> }
>>> flag, return_info = ub.indexable_allclose(items1, items2, return_info=True)
>>> print('return_info = {}'.format(ub.repr2(return_info, nl=1)))
>>> print('flag = {!r}'.format(flag))
"""
import ubelt as ub
ub.schedule_deprecation(
'ubelt', 'indexable_allclose', 'function',
migration=(
'Use `ub.IndexableWalker(items1).allclose(ub.IndexableWalker(items2))` instead'
))
walker1 = IndexableWalker(items1)
walker2 = IndexableWalker(items2)
return walker1.allclose(walker2, rel_tol=rel_tol, abs_tol=abs_tol,
return_info=return_info)
# class Indexable(IndexableWalker):
# """
# In the future IndexableWalker may simply change to Indexable
# """
# ...
|