1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
def variant():
import random
import ubelt as ub
num_items = 100
num_other = 1
first_keys = [random.randint(0, 1000) for _ in range(num_items)]
remove_sets = [list(ub.unique(random.choices(first_keys, k=10) + [random.randint(0, 1000) for _ in range(num_items)])) for _ in range(num_other)]
first_dict = {k: k for k in first_keys}
args = [first_dict] + [{k: k for k in ks} for ks in remove_sets]
dictclass = dict
import timerit
ti = timerit.Timerit(100, bestof=10, verbose=2)
for timer in ti.reset('orig'):
with timer:
keys = set(first_dict)
keys.difference_update(*map(set, args[1:]))
new0 = dictclass((k, first_dict[k]) for k in keys)
for timer in ti.reset('alt1'):
with timer:
remove_keys = {k for ks in args[1:] for k in ks}
new1 = dictclass((k, v) for k, v in first_dict.items() if k not in remove_keys)
for timer in ti.reset('alt2'):
with timer:
remove_keys = set.union(*map(set, args[1:]))
new2 = dictclass((k, v) for k, v in first_dict.items() if k not in remove_keys)
for timer in ti.reset('alt3'):
with timer:
remove_keys = set.union(*map(set, args[1:]))
new3 = dictclass((k, first_dict[k]) for k in first_dict.keys() if k not in remove_keys)
# Cannot use until 3.6 is dropped (it is faster)
for timer in ti.reset('alt4'):
with timer:
remove_keys = set.union(*map(set, args[1:]))
new4 = {k: v for k, v in first_dict.items() if k not in remove_keys}
assert new1 == new0
assert new2 == new0
assert new3 == new0
assert new4 == new0
def benchmark_dict_diff_impl():
import ubelt as ub
import pandas as pd
import timerit
import random
def method_diffkeys(*args):
first_dict = args[0]
keys = set(first_dict)
keys.difference_update(*map(set, args[1:]))
new0 = dict((k, first_dict[k]) for k in keys)
return new0
def method_diffkeys_list(*args):
first_dict = args[0]
remove_keys = set.union(*map(set, args[1:]))
keep_keys = [k for k in first_dict.keys() if k not in remove_keys]
new = dict((k, first_dict[k]) for k in keep_keys)
return new
def method_diffkeys_oset(*args):
first_dict = args[0]
keys = ub.oset(first_dict)
keys.difference_update(*map(set, args[1:]))
new0 = dict((k, first_dict[k]) for k in keys)
return new0
def method_ifkeys_setcomp(*args):
first_dict = args[0]
remove_keys = {k for ks in args[1:] for k in ks}
new1 = dict((k, v) for k, v in first_dict.items() if k not in remove_keys)
return new1
def method_ifkeys_setunion(*args):
first_dict = args[0]
remove_keys = set.union(*map(set, args[1:]))
new2 = dict((k, v) for k, v in first_dict.items() if k not in remove_keys)
return new2
def method_ifkeys_getitem(*args):
first_dict = args[0]
remove_keys = set.union(*map(set, args[1:]))
new3 = dict((k, first_dict[k]) for k in first_dict.keys() if k not in remove_keys)
return new3
def method_ifkeys_dictcomp(*args):
# Cannot use until 3.6 is dropped (it is faster)
first_dict = args[0]
remove_keys = set.union(*map(set, args[1:]))
new4 = {k: v for k, v in first_dict.items() if k not in remove_keys}
return new4
def method_ifkeys_dictcomp_getitem(*args):
# Cannot use until 3.6 is dropped (it is faster)
first_dict = args[0]
remove_keys = set.union(*map(set, args[1:]))
new4 = {k: first_dict[k] for k in first_dict.keys() if k not in remove_keys}
return new4
method_lut = locals() # can populate this some other way
def make_data(num_items, num_other, remove_fraction, keytype):
if keytype == 'str':
keytype = str
if keytype == 'int':
keytype = int
first_keys = [random.randint(0, 1000) for _ in range(num_items)]
k = int(remove_fraction * len(first_keys))
remove_sets = [list(ub.unique(random.choices(first_keys, k=k) + [random.randint(0, 1000) for _ in range(num_items)])) for _ in range(num_other)]
first_dict = {keytype(k): k for k in first_keys}
args = [first_dict] + [{keytype(k): k for k in ks} for ks in remove_sets]
return args
ti = timerit.Timerit(200, bestof=1, verbose=2)
basis = {
'method': [
# Cant use because unordered
# 'method_diffkeys',
# Cant use because python 3.6
'method_ifkeys_dictcomp',
'method_ifkeys_dictcomp_getitem',
'method_ifkeys_setunion',
'method_ifkeys_getitem',
'method_diffkeys_list',
# Probably not good
# 'method_ifkeys_setcomp',
# 'method_diffkeys_oset',
],
'num_items': [10, 100, 1000],
'num_other': [1, 3, 5],
# 'num_other': [1],
'remove_fraction': [0, 0.2, 0.5, 0.7, 1.0],
# 'remove_fraction': [0.2, 0.8],
'keytype': ['str', 'int'],
# 'keytype': ['str'],
# 'param_name': [param values],
}
xlabel = 'num_items'
kw_labels = ['num_items', 'num_other', 'remove_fraction', 'keytype']
group_labels = {
'style': ['num_other', 'keytype'],
'size': ['remove_fraction'],
}
group_labels['hue'] = list(
(ub.oset(basis) - {xlabel}) - set.union(*map(set, group_labels.values())))
grid_iter = list(ub.named_product(basis))
# For each variation of your experiment, create a row.
rows = []
for params in grid_iter:
group_keys = {}
for gname, labels in group_labels.items():
group_keys[gname + '_key'] = ub.repr2(
ub.dict_isect(params, labels), compact=1, si=1)
key = ub.repr2(params, compact=1, si=1)
kwargs = ub.dict_isect(params.copy(), kw_labels)
args = make_data(**kwargs)
method = method_lut[params['method']]
# Timerit will run some user-specified number of loops.
# and compute time stats with similar methodology to timeit
for timer in ti.reset(key):
# Put any setup logic you dont want to time here.
# ...
with timer:
# Put the logic you want to time here
method(*args)
row = {
'mean': ti.mean(),
'min': ti.min(),
'key': key,
**group_keys,
**params,
}
rows.append(row)
# The rows define a long-form pandas data array.
# Data in long-form makes it very easy to use seaborn.
data = pd.DataFrame(rows)
data = data.sort_values('min')
print(data)
# for each parameter setting, group all methods with that used those exact
# comparable params. Then rank how good each method did. That will be a
# preference profile. We will give that preference profile a weight (e.g.
# based on the fastest method in the bunch) and then aggregate them with
# some voting method.
USE_OPENSKILL = 1
if USE_OPENSKILL:
# Lets try a real ranking method
# https://github.com/OpenDebates/openskill.py
import openskill
method_ratings = {m: openskill.Rating() for m in basis['method']}
weighted_rankings = ub.ddict(lambda: ub.ddict(float))
for params, variants in data.groupby(['num_other', 'keytype', 'remove_fraction', 'num_items']):
variants = variants.sort_values('mean')
ranking = variants['method'].reset_index(drop=True)
if USE_OPENSKILL:
# The idea is that each setting of parameters is a game, and each
# "method" is a player. We rank the players by which is fastest,
# and update their ranking according to the Weng-Lin Bayes ranking
# model. This does not take the fact that some "games" (i.e.
# parameter settings) are more important than others, but it should
# be fairly robust on average.
old_ratings = [[r] for r in ub.take(method_ratings, ranking)]
new_values = openskill.rate(old_ratings) # Not inplace
new_ratings = [openskill.Rating(*new[0]) for new in new_values]
method_ratings.update(ub.dzip(ranking, new_ratings))
# Choose a ranking weight scheme
weight = variants['mean'].min()
# weight = 1
for rank, method in enumerate(ranking):
weighted_rankings[method][rank] += weight
weighted_rankings[method]['total'] += weight
# Probably a more robust voting method to do this
weight_rank_rows = []
for method_name, ranks in weighted_rankings.items():
weights = ub.dict_diff(ranks, ['total'])
p_rank = ub.map_values(lambda w: w / ranks['total'], weights)
for rank, w in p_rank.items():
weight_rank_rows.append({'rank': rank, 'weight': w, 'name': method_name})
weight_rank_df = pd.DataFrame(weight_rank_rows)
piv = weight_rank_df.pivot(['name'], ['rank'], ['weight'])
print(piv)
if USE_OPENSKILL:
from openskill import predict_win
win_prob = predict_win([[r] for r in method_ratings.values()])
skill_agg = pd.Series(ub.dzip(method_ratings.keys(), win_prob)).sort_values(ascending=False)
print('skill_agg =\n{}'.format(skill_agg))
aggregated = (piv * piv.columns.levels[1].values).sum(axis=1).sort_values()
print('weight aggregated =\n{}'.format(aggregated))
plot = True
if plot:
# import seaborn as sns
# kwplot autosns works well for IPython and script execution.
# not sure about notebooks.
import kwplot
sns = kwplot.autosns()
plotkw = {}
for gname, labels in group_labels.items():
if labels:
plotkw[gname] = gname + '_key'
# Your variables may change
ax = kwplot.figure(fnum=1, doclf=True).gca()
sns.lineplot(data=data, x=xlabel, y='min', marker='o', ax=ax, **plotkw)
ax.set_title('Benchmark')
ax.set_xlabel('A better x-variable description')
ax.set_ylabel('A better y-variable description')
|