1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
def benchmark_template():
import ubelt as ub
import pandas as pd
import inspect
import timerit
import time
from fractions import Fraction
_perf_counter_ns = time.perf_counter_ns
# Some bookkeeping needs to be done to build a dictionary that maps the
# method names to the functions themselves.
method_lut = {}
def register_method(func):
method_lut[func.__name__] = func
return func
@register_method
def method_ns_frac1(n):
from fractions import Fraction
for _ in range(n):
Fraction(time.perf_counter_ns(), 1_000_000_000)
@register_method
def method_ns_frac2(n):
for _ in range(n):
Fraction(time.perf_counter_ns(), 1_000_000_000)
@register_method
def method_ns_frac3(n):
for _ in range(n):
Fraction(_perf_counter_ns(), 1_000_000_000)
@register_method
def method_ns_float(n):
for _ in range(n):
time.perf_counter_ns() / 1_000_000_000
@register_method
def method_perf_counter_raw(n):
for _ in range(n):
time.perf_counter()
@register_method
def method_perf_counter_ns_raw(n):
for _ in range(n):
time.perf_counter()
# Change params here to modify number of trials
ti = timerit.Timerit(100000, bestof=100, verbose=1)
# if True, record every trail run and show variance in seaborn
# if False, use the standard timerit min/mean measures
RECORD_ALL = True
# These are the parameters that we benchmark over
basis = {
'method': list(method_lut),
'n': [0, 16, 64, 128, 256, 1024],
# 'param_name': [param values],
}
xlabel = 'n'
# Set these to param labels that directly transfer to method kwargs
# kw_labels = ['n']
kw_labels = list(inspect.signature(ub.peek(method_lut.values())).parameters)
# Set these to empty lists if they are not used
group_labels = {
'style': [],
'size': [],
}
group_labels['hue'] = list(
(ub.oset(basis) - {xlabel}) - set.union(*map(set, group_labels.values())))
grid_iter = list(ub.named_product(basis))
# For each variation of your experiment, create a row.
rows = []
for params in grid_iter:
group_keys = {}
for gname, labels in group_labels.items():
group_keys[gname + '_key'] = ub.repr2(
ub.dict_isect(params, labels), compact=1, si=1)
key = ub.repr2(params, compact=1, si=1)
# Make any modifications you need to compute input kwargs for each
# method here.
kwargs = ub.dict_isect(params.copy(), kw_labels)
method = method_lut[params['method']]
# Timerit will run some user-specified number of loops.
# and compute time stats with similar methodology to timeit
for timer in ti.reset(key):
# Put any setup logic you dont want to time here.
# ...
with timer:
# Put the logic you want to time here
method(**kwargs)
if RECORD_ALL:
# Seaborn will show the variance if this is enabled, otherwise
# use the robust timerit mean / min times
# chunk_iter = ub.chunks(ti.times, ti.bestof)
# times = list(map(min, chunk_iter)) # TODO: timerit method for this
times = ti.robust_times()
for _time in times:
row = {
# 'mean': ti.mean(),
'time': _time,
'key': key,
**group_keys,
**params,
}
rows.append(row)
else:
row = {
'mean': ti.mean(),
'min': ti.min(),
'key': key,
**group_keys,
**params,
}
rows.append(row)
time_key = 'time' if RECORD_ALL else 'min'
# The rows define a long-form pandas data array.
# Data in long-form makes it very easy to use seaborn.
data = pd.DataFrame(rows)
data = data.sort_values(time_key)
if RECORD_ALL:
# Show the min / mean if we record all
min_times = data.groupby('key').min().rename({'time': 'min'}, axis=1)
mean_times = data.groupby('key')[['time']].mean().rename({'time': 'mean'}, axis=1)
stats_data = pd.concat([min_times, mean_times], axis=1)
stats_data = stats_data.sort_values('min')
else:
stats_data = data
USE_OPENSKILL = 0
if USE_OPENSKILL:
# Lets try a real ranking method
# https://github.com/OpenDebates/openskill.py
import openskill
method_ratings = {m: openskill.Rating() for m in basis['method']}
other_keys = sorted(set(stats_data.columns) - {'key', 'method', 'min', 'mean', 'hue_key', 'size_key', 'style_key'})
for params, variants in stats_data.groupby(other_keys):
variants = variants.sort_values('mean')
ranking = variants['method'].reset_index(drop=True)
mean_speedup = variants['mean'].max() / variants['mean']
stats_data.loc[mean_speedup.index, 'mean_speedup'] = mean_speedup
min_speedup = variants['min'].max() / variants['min']
stats_data.loc[min_speedup.index, 'min_speedup'] = min_speedup
if USE_OPENSKILL:
# The idea is that each setting of parameters is a game, and each
# "method" is a player. We rank the players by which is fastest,
# and update their ranking according to the Weng-Lin Bayes ranking
# model. This does not take the fact that some "games" (i.e.
# parameter settings) are more important than others, but it should
# be fairly robust on average.
old_ratings = [[r] for r in ub.take(method_ratings, ranking)]
new_values = openskill.rate(old_ratings) # Not inplace
new_ratings = [openskill.Rating(*new[0]) for new in new_values]
method_ratings.update(ub.dzip(ranking, new_ratings))
print('Statistics:')
print(stats_data)
if USE_OPENSKILL:
from openskill import predict_win
win_prob = predict_win([[r] for r in method_ratings.values()])
skill_agg = pd.Series(ub.dzip(method_ratings.keys(), win_prob)).sort_values(ascending=False)
print('Aggregated Rankings =\n{}'.format(skill_agg))
plot = True
if plot:
# import seaborn as sns
# kwplot autosns works well for IPython and script execution.
# not sure about notebooks.
import kwplot
sns = kwplot.autosns()
plt = kwplot.autoplt()
plotkw = {}
for gname, labels in group_labels.items():
if labels:
plotkw[gname] = gname + '_key'
# Your variables may change
ax = kwplot.figure(fnum=1, doclf=True).gca()
sns.lineplot(data=data, x=xlabel, y=time_key, marker='o', ax=ax, **plotkw)
ax.set_title('Benchmark Name')
ax.set_xlabel('Size (todo: A better x-variable description)')
ax.set_ylabel('Time (todo: A better y-variable description)')
# ax.set_xscale('log')
# ax.set_yscale('log')
try:
__IPYTHON__
except NameError:
plt.show()
if __name__ == '__main__':
"""
CommandLine:
python ~/code/timerit/examples/benchmark_template.py
"""
benchmark_template()
|