File: bluetooth_le.c

package info (click to toggle)
ubertooth 2018.12.R1-5.4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,320 kB
  • sloc: ansic: 18,653; cpp: 2,549; python: 604; makefile: 474; asm: 113; perl: 86; sh: 63; ruby: 43; xml: 20
file content (242 lines) | stat: -rw-r--r-- 7,469 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
 * Copyright 2012 Dominic Spill
 *
 * This file is part of Project Ubertooth.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#include "bluetooth_le.h"

#include <string.h>

extern u8 le_channel_idx;
extern u8 le_hop_amount;

u16 btle_next_hop(le_state_t *le)
{
	u16 phys = btle_channel_index_to_phys(le->channel_idx);
	le->channel_idx = (le->channel_idx + le->channel_increment) % 37;
	return phys;
}

// calculate channel index from physical channel
// channel is in range [2402, 2480]
uint8_t btle_channel_index(uint16_t channel) {
	uint8_t idx;
	channel = (channel - 2402) / 2;
	if (channel == 0)
		idx = 37;
	else if (channel < 12)
		idx = channel - 1;
	else if (channel == 12)
		idx = 38;
	else if (channel < 39)
		idx = channel - 2;
	else
		idx = 39;
	return idx;
}

u16 btle_channel_index_to_phys(u8 idx) {
	u16 phys;
	if (idx < 11)
		phys = 2404 + 2 * idx;
	else if (idx < 37)
		phys = 2428 + 2 * (idx - 11);
	else if (idx == 37)
		phys = 2402;
	else if (idx == 38)
		phys = 2426;
	else
		phys = 2480;
	return phys;
}

// calculate CRC
//	note 1: crc_init's bits should be in reverse order
//	note 2: output bytes are in reverse order compared to wire
//
//		example output:
//			0x6ff46e
//
//		bytes in packet will be:
//		  { 0x6e, 0xf4, 0x6f }
//
u32 btle_calc_crc(u32 crc_init, u8 *data, int len) {
	u32 state = crc_init & 0xffffff;
	u32 lfsr_mask = 0x5a6000; // 010110100110000000000000
	int i, j;

	for (i = 0; i < len; ++i) {
		u8 cur = data[i];
		for (j = 0; j < 8; ++j) {
			int next_bit = (state ^ cur) & 1;
			cur >>= 1;
			state >>= 1;
			if (next_bit) {
				state |= 1 << 23;
				state ^= lfsr_mask;
			}
		}
	}

	return state;
}

// runs the CRC in reverse to generate a CRCInit
//
//	crc should be big endian
//	the return will be big endian
//
u32 btle_reverse_crc(u32 crc, u8 *data, int len) {
	u32 state = crc;
	u32 lfsr_mask = 0xb4c000; // 101101001100000000000000
	u32 ret;
	int i, j;

	for (i = len - 1; i >= 0; --i) {
		u8 cur = data[i];
		for (j = 0; j < 8; ++j) {
			int top_bit = state >> 23;
			state = (state << 1) & 0xffffff;
			state |= top_bit ^ ((cur >> (7 - j)) & 1);
			if (top_bit)
				state ^= lfsr_mask;
		}
	}

	ret = 0;
	for (i = 0; i < 24; ++i)
		ret |= ((state >> i) & 1) << (23 - i);

	return ret;
}

u32 btle_crc_lut[256] = {
	0x000000, 0x01b4c0, 0x036980, 0x02dd40, 0x06d300, 0x0767c0, 0x05ba80, 0x040e40,
	0x0da600, 0x0c12c0, 0x0ecf80, 0x0f7b40, 0x0b7500, 0x0ac1c0, 0x081c80, 0x09a840,
	0x1b4c00, 0x1af8c0, 0x182580, 0x199140, 0x1d9f00, 0x1c2bc0, 0x1ef680, 0x1f4240,
	0x16ea00, 0x175ec0, 0x158380, 0x143740, 0x103900, 0x118dc0, 0x135080, 0x12e440,
	0x369800, 0x372cc0, 0x35f180, 0x344540, 0x304b00, 0x31ffc0, 0x332280, 0x329640,
	0x3b3e00, 0x3a8ac0, 0x385780, 0x39e340, 0x3ded00, 0x3c59c0, 0x3e8480, 0x3f3040,
	0x2dd400, 0x2c60c0, 0x2ebd80, 0x2f0940, 0x2b0700, 0x2ab3c0, 0x286e80, 0x29da40,
	0x207200, 0x21c6c0, 0x231b80, 0x22af40, 0x26a100, 0x2715c0, 0x25c880, 0x247c40,
	0x6d3000, 0x6c84c0, 0x6e5980, 0x6fed40, 0x6be300, 0x6a57c0, 0x688a80, 0x693e40,
	0x609600, 0x6122c0, 0x63ff80, 0x624b40, 0x664500, 0x67f1c0, 0x652c80, 0x649840,
	0x767c00, 0x77c8c0, 0x751580, 0x74a140, 0x70af00, 0x711bc0, 0x73c680, 0x727240,
	0x7bda00, 0x7a6ec0, 0x78b380, 0x790740, 0x7d0900, 0x7cbdc0, 0x7e6080, 0x7fd440,
	0x5ba800, 0x5a1cc0, 0x58c180, 0x597540, 0x5d7b00, 0x5ccfc0, 0x5e1280, 0x5fa640,
	0x560e00, 0x57bac0, 0x556780, 0x54d340, 0x50dd00, 0x5169c0, 0x53b480, 0x520040,
	0x40e400, 0x4150c0, 0x438d80, 0x423940, 0x463700, 0x4783c0, 0x455e80, 0x44ea40,
	0x4d4200, 0x4cf6c0, 0x4e2b80, 0x4f9f40, 0x4b9100, 0x4a25c0, 0x48f880, 0x494c40,
	0xda6000, 0xdbd4c0, 0xd90980, 0xd8bd40, 0xdcb300, 0xdd07c0, 0xdfda80, 0xde6e40,
	0xd7c600, 0xd672c0, 0xd4af80, 0xd51b40, 0xd11500, 0xd0a1c0, 0xd27c80, 0xd3c840,
	0xc12c00, 0xc098c0, 0xc24580, 0xc3f140, 0xc7ff00, 0xc64bc0, 0xc49680, 0xc52240,
	0xcc8a00, 0xcd3ec0, 0xcfe380, 0xce5740, 0xca5900, 0xcbedc0, 0xc93080, 0xc88440,
	0xecf800, 0xed4cc0, 0xef9180, 0xee2540, 0xea2b00, 0xeb9fc0, 0xe94280, 0xe8f640,
	0xe15e00, 0xe0eac0, 0xe23780, 0xe38340, 0xe78d00, 0xe639c0, 0xe4e480, 0xe55040,
	0xf7b400, 0xf600c0, 0xf4dd80, 0xf56940, 0xf16700, 0xf0d3c0, 0xf20e80, 0xf3ba40,
	0xfa1200, 0xfba6c0, 0xf97b80, 0xf8cf40, 0xfcc100, 0xfd75c0, 0xffa880, 0xfe1c40,
	0xb75000, 0xb6e4c0, 0xb43980, 0xb58d40, 0xb18300, 0xb037c0, 0xb2ea80, 0xb35e40,
	0xbaf600, 0xbb42c0, 0xb99f80, 0xb82b40, 0xbc2500, 0xbd91c0, 0xbf4c80, 0xbef840,
	0xac1c00, 0xada8c0, 0xaf7580, 0xaec140, 0xaacf00, 0xab7bc0, 0xa9a680, 0xa81240,
	0xa1ba00, 0xa00ec0, 0xa2d380, 0xa36740, 0xa76900, 0xa6ddc0, 0xa40080, 0xa5b440,
	0x81c800, 0x807cc0, 0x82a180, 0x831540, 0x871b00, 0x86afc0, 0x847280, 0x85c640,
	0x8c6e00, 0x8ddac0, 0x8f0780, 0x8eb340, 0x8abd00, 0x8b09c0, 0x89d480, 0x886040,
	0x9a8400, 0x9b30c0, 0x99ed80, 0x985940, 0x9c5700, 0x9de3c0, 0x9f3e80, 0x9e8a40,
	0x972200, 0x9696c0, 0x944b80, 0x95ff40, 0x91f100, 0x9045c0, 0x929880, 0x932c40
};

/*
 * Calculate a BTLE CRC one byte at a time. Thanks to Dominic Spill and
 * Michael Ossmann for writing and optimizing this.
 *
 * Arguments: CRCInit, pointer to start of packet, length of packet in
 * bytes
 * */
u32 btle_crcgen_lut(u32 crc_init, u8 *data, int len) {
	u32 state;
	int i;
	u8 key;

	state = crc_init & 0xffffff;
	for (i = 0; i < len; ++i) {
		key = data[i] ^ (state & 0xff);
		state = (state >> 8) ^ btle_crc_lut[key];
	}
	return state;
}

/*
 * Dewhiten and reverse the bit order of a buffer in place.
 * Channel is a physical channel in the range [2402, 2480]
 * TODO convert this to use whitening word
 */
void le_dewhiten(uint8_t *data, unsigned size, unsigned channel) {
	unsigned i, j, bit;
	unsigned idx = whitening_index[btle_channel_index(channel)];

	for (i = 0; i < size; ++i) {
		uint8_t out = 0;
		for (j = 0; j < 8; ++j) {
			bit = (data[i] >> (7-j)) & 1;
			bit ^= whitening[idx];
			idx = (idx + 1) % sizeof(whitening);
			out |= bit << j;
		}
		data[i] = out;
	}
}

/*
 * Parse a channel map and populate the le_channel_remapping_t struct.
 */
void le_parse_channel_map(uint8_t *channel_map, le_channel_remapping_t *remapping) {
	unsigned i, j, byte;
	unsigned idx = 0;

	memset(remapping, 0, sizeof(*remapping));

	for (i = 0; i < 5; ++i) {
		byte = channel_map[i];
		for (j = 0; j < 8; ++j) {
			if (byte & 1) {
				remapping->channel_in_use[idx] = 1;
				remapping->remapping_index[remapping->total_channels] = idx;
				++remapping->total_channels;
			} else {
				remapping->channel_in_use[idx] = 0;
			}

			byte >>= 1;

			++idx;
			if (idx == 37)
				break;
		}
	}
}

/*
 * Map a channel index to a used index given a remapping struct.
 */
uint8_t le_map_channel(uint8_t channel_idx, le_channel_remapping_t *remapping) {
	if (remapping->channel_in_use[channel_idx])
		return channel_idx;
	else
		return remapping->remapping_index[channel_idx % remapping->total_channels];
}