1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/*
* Copyright 2012 Dominic Spill
*
* This file is part of Project Ubertooth.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "bluetooth_le.h"
#include <string.h>
extern u8 le_channel_idx;
extern u8 le_hop_amount;
u16 btle_next_hop(le_state_t *le)
{
u16 phys = btle_channel_index_to_phys(le->channel_idx);
le->channel_idx = (le->channel_idx + le->channel_increment) % 37;
return phys;
}
// calculate channel index from physical channel
// channel is in range [2402, 2480]
uint8_t btle_channel_index(uint16_t channel) {
uint8_t idx;
channel = (channel - 2402) / 2;
if (channel == 0)
idx = 37;
else if (channel < 12)
idx = channel - 1;
else if (channel == 12)
idx = 38;
else if (channel < 39)
idx = channel - 2;
else
idx = 39;
return idx;
}
u16 btle_channel_index_to_phys(u8 idx) {
u16 phys;
if (idx < 11)
phys = 2404 + 2 * idx;
else if (idx < 37)
phys = 2428 + 2 * (idx - 11);
else if (idx == 37)
phys = 2402;
else if (idx == 38)
phys = 2426;
else
phys = 2480;
return phys;
}
// calculate CRC
// note 1: crc_init's bits should be in reverse order
// note 2: output bytes are in reverse order compared to wire
//
// example output:
// 0x6ff46e
//
// bytes in packet will be:
// { 0x6e, 0xf4, 0x6f }
//
u32 btle_calc_crc(u32 crc_init, u8 *data, int len) {
u32 state = crc_init & 0xffffff;
u32 lfsr_mask = 0x5a6000; // 010110100110000000000000
int i, j;
for (i = 0; i < len; ++i) {
u8 cur = data[i];
for (j = 0; j < 8; ++j) {
int next_bit = (state ^ cur) & 1;
cur >>= 1;
state >>= 1;
if (next_bit) {
state |= 1 << 23;
state ^= lfsr_mask;
}
}
}
return state;
}
// runs the CRC in reverse to generate a CRCInit
//
// crc should be big endian
// the return will be big endian
//
u32 btle_reverse_crc(u32 crc, u8 *data, int len) {
u32 state = crc;
u32 lfsr_mask = 0xb4c000; // 101101001100000000000000
u32 ret;
int i, j;
for (i = len - 1; i >= 0; --i) {
u8 cur = data[i];
for (j = 0; j < 8; ++j) {
int top_bit = state >> 23;
state = (state << 1) & 0xffffff;
state |= top_bit ^ ((cur >> (7 - j)) & 1);
if (top_bit)
state ^= lfsr_mask;
}
}
ret = 0;
for (i = 0; i < 24; ++i)
ret |= ((state >> i) & 1) << (23 - i);
return ret;
}
u32 btle_crc_lut[256] = {
0x000000, 0x01b4c0, 0x036980, 0x02dd40, 0x06d300, 0x0767c0, 0x05ba80, 0x040e40,
0x0da600, 0x0c12c0, 0x0ecf80, 0x0f7b40, 0x0b7500, 0x0ac1c0, 0x081c80, 0x09a840,
0x1b4c00, 0x1af8c0, 0x182580, 0x199140, 0x1d9f00, 0x1c2bc0, 0x1ef680, 0x1f4240,
0x16ea00, 0x175ec0, 0x158380, 0x143740, 0x103900, 0x118dc0, 0x135080, 0x12e440,
0x369800, 0x372cc0, 0x35f180, 0x344540, 0x304b00, 0x31ffc0, 0x332280, 0x329640,
0x3b3e00, 0x3a8ac0, 0x385780, 0x39e340, 0x3ded00, 0x3c59c0, 0x3e8480, 0x3f3040,
0x2dd400, 0x2c60c0, 0x2ebd80, 0x2f0940, 0x2b0700, 0x2ab3c0, 0x286e80, 0x29da40,
0x207200, 0x21c6c0, 0x231b80, 0x22af40, 0x26a100, 0x2715c0, 0x25c880, 0x247c40,
0x6d3000, 0x6c84c0, 0x6e5980, 0x6fed40, 0x6be300, 0x6a57c0, 0x688a80, 0x693e40,
0x609600, 0x6122c0, 0x63ff80, 0x624b40, 0x664500, 0x67f1c0, 0x652c80, 0x649840,
0x767c00, 0x77c8c0, 0x751580, 0x74a140, 0x70af00, 0x711bc0, 0x73c680, 0x727240,
0x7bda00, 0x7a6ec0, 0x78b380, 0x790740, 0x7d0900, 0x7cbdc0, 0x7e6080, 0x7fd440,
0x5ba800, 0x5a1cc0, 0x58c180, 0x597540, 0x5d7b00, 0x5ccfc0, 0x5e1280, 0x5fa640,
0x560e00, 0x57bac0, 0x556780, 0x54d340, 0x50dd00, 0x5169c0, 0x53b480, 0x520040,
0x40e400, 0x4150c0, 0x438d80, 0x423940, 0x463700, 0x4783c0, 0x455e80, 0x44ea40,
0x4d4200, 0x4cf6c0, 0x4e2b80, 0x4f9f40, 0x4b9100, 0x4a25c0, 0x48f880, 0x494c40,
0xda6000, 0xdbd4c0, 0xd90980, 0xd8bd40, 0xdcb300, 0xdd07c0, 0xdfda80, 0xde6e40,
0xd7c600, 0xd672c0, 0xd4af80, 0xd51b40, 0xd11500, 0xd0a1c0, 0xd27c80, 0xd3c840,
0xc12c00, 0xc098c0, 0xc24580, 0xc3f140, 0xc7ff00, 0xc64bc0, 0xc49680, 0xc52240,
0xcc8a00, 0xcd3ec0, 0xcfe380, 0xce5740, 0xca5900, 0xcbedc0, 0xc93080, 0xc88440,
0xecf800, 0xed4cc0, 0xef9180, 0xee2540, 0xea2b00, 0xeb9fc0, 0xe94280, 0xe8f640,
0xe15e00, 0xe0eac0, 0xe23780, 0xe38340, 0xe78d00, 0xe639c0, 0xe4e480, 0xe55040,
0xf7b400, 0xf600c0, 0xf4dd80, 0xf56940, 0xf16700, 0xf0d3c0, 0xf20e80, 0xf3ba40,
0xfa1200, 0xfba6c0, 0xf97b80, 0xf8cf40, 0xfcc100, 0xfd75c0, 0xffa880, 0xfe1c40,
0xb75000, 0xb6e4c0, 0xb43980, 0xb58d40, 0xb18300, 0xb037c0, 0xb2ea80, 0xb35e40,
0xbaf600, 0xbb42c0, 0xb99f80, 0xb82b40, 0xbc2500, 0xbd91c0, 0xbf4c80, 0xbef840,
0xac1c00, 0xada8c0, 0xaf7580, 0xaec140, 0xaacf00, 0xab7bc0, 0xa9a680, 0xa81240,
0xa1ba00, 0xa00ec0, 0xa2d380, 0xa36740, 0xa76900, 0xa6ddc0, 0xa40080, 0xa5b440,
0x81c800, 0x807cc0, 0x82a180, 0x831540, 0x871b00, 0x86afc0, 0x847280, 0x85c640,
0x8c6e00, 0x8ddac0, 0x8f0780, 0x8eb340, 0x8abd00, 0x8b09c0, 0x89d480, 0x886040,
0x9a8400, 0x9b30c0, 0x99ed80, 0x985940, 0x9c5700, 0x9de3c0, 0x9f3e80, 0x9e8a40,
0x972200, 0x9696c0, 0x944b80, 0x95ff40, 0x91f100, 0x9045c0, 0x929880, 0x932c40
};
/*
* Calculate a BTLE CRC one byte at a time. Thanks to Dominic Spill and
* Michael Ossmann for writing and optimizing this.
*
* Arguments: CRCInit, pointer to start of packet, length of packet in
* bytes
* */
u32 btle_crcgen_lut(u32 crc_init, u8 *data, int len) {
u32 state;
int i;
u8 key;
state = crc_init & 0xffffff;
for (i = 0; i < len; ++i) {
key = data[i] ^ (state & 0xff);
state = (state >> 8) ^ btle_crc_lut[key];
}
return state;
}
/*
* Dewhiten and reverse the bit order of a buffer in place.
* Channel is a physical channel in the range [2402, 2480]
* TODO convert this to use whitening word
*/
void le_dewhiten(uint8_t *data, unsigned size, unsigned channel) {
unsigned i, j, bit;
unsigned idx = whitening_index[btle_channel_index(channel)];
for (i = 0; i < size; ++i) {
uint8_t out = 0;
for (j = 0; j < 8; ++j) {
bit = (data[i] >> (7-j)) & 1;
bit ^= whitening[idx];
idx = (idx + 1) % sizeof(whitening);
out |= bit << j;
}
data[i] = out;
}
}
/*
* Parse a channel map and populate the le_channel_remapping_t struct.
*/
void le_parse_channel_map(uint8_t *channel_map, le_channel_remapping_t *remapping) {
unsigned i, j, byte;
unsigned idx = 0;
memset(remapping, 0, sizeof(*remapping));
for (i = 0; i < 5; ++i) {
byte = channel_map[i];
for (j = 0; j < 8; ++j) {
if (byte & 1) {
remapping->channel_in_use[idx] = 1;
remapping->remapping_index[remapping->total_channels] = idx;
++remapping->total_channels;
} else {
remapping->channel_in_use[idx] = 0;
}
byte >>= 1;
++idx;
if (idx == 37)
break;
}
}
}
/*
* Map a channel index to a used index given a remapping struct.
*/
uint8_t le_map_channel(uint8_t channel_idx, le_channel_remapping_t *remapping) {
if (remapping->channel_in_use[channel_idx])
return channel_idx;
else
return remapping->remapping_index[channel_idx % remapping->total_channels];
}
|