1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
|
/*#define PROFILE*/
/*
* fec.c -- forward error correction based on Vandermonde matrices
* 980624
* (C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it)
* (C) 2001 Alain Knaff (alain@knaff.lu)
*
* Portions derived from code by Phil Karn (karn@ka9q.ampr.org),
* Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari
* Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
#ifdef BB_FEATURE_UDPCAST_FEC
/*
* The following parameter defines how many bits are used for
* field elements. The code supports any value from 2 to 16
* but fastest operation is achieved with 8 bit elements
* This is the only parameter you may want to change.
*/
#define GF_BITS 8 /* code over GF(2**GF_BITS) - change to suit */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "fec.h"
#include "socklib.h"
/*
* stuff used for testing purposes only
*/
#ifdef TEST
#define DEB(x)
#define DDB(x) x
#define DEBUG 0 /* minimal debugging */
#include <sys/time.h>
#define DIFF_T(a,b) \
(1+ 1000000*(a.tv_sec - b.tv_sec) + (a.tv_usec - b.tv_usec) )
#define TICK(t) \
{struct timeval x ; \
gettimeofday(&x, NULL) ; \
t = x.tv_usec + 1000000* (x.tv_sec & 0xff ) ; \
}
#define TOCK(t) \
{ u_long t1 ; TICK(t1) ; \
if (t1 < t) t = 256000000 + t1 - t ; \
else t = t1 - t ; \
if (t == 0) t = 1 ;}
u_long ticks[10]; /* vars for timekeeping */
#else
#define DEB(x)
#define DDB(x)
#define TICK(x)
#define TOCK(x)
#endif /* TEST */
/*
* You should not need to change anything beyond this point.
* The first part of the file implements linear algebra in GF.
*
* gf is the type used to store an element of the Galois Field.
* Must constain at least GF_BITS bits.
*
* Note: unsigned char will work up to GF(256) but int seems to run
* faster on the Pentium. We use int whenever have to deal with an
* index, since they are generally faster.
*/
/*
* AK: Udpcast only uses GF_BITS=8. Remove other possibilities
*/
#if (GF_BITS != 8)
#error "GF_BITS must be 8"
#endif
typedef unsigned char gf;
#define GF_SIZE ((1 << GF_BITS) - 1) /* powers of \alpha */
/*
* Primitive polynomials - see Lin & Costello, Appendix A,
* and Lee & Messerschmitt, p. 453.
*/
static char *allPp[] = { /* GF_BITS polynomial */
NULL, /* 0 no code */
NULL, /* 1 no code */
"111", /* 2 1+x+x^2 */
"1101", /* 3 1+x+x^3 */
"11001", /* 4 1+x+x^4 */
"101001", /* 5 1+x^2+x^5 */
"1100001", /* 6 1+x+x^6 */
"10010001", /* 7 1 + x^3 + x^7 */
"101110001", /* 8 1+x^2+x^3+x^4+x^8 */
"1000100001", /* 9 1+x^4+x^9 */
"10010000001", /* 10 1+x^3+x^10 */
"101000000001", /* 11 1+x^2+x^11 */
"1100101000001", /* 12 1+x+x^4+x^6+x^12 */
"11011000000001", /* 13 1+x+x^3+x^4+x^13 */
"110000100010001", /* 14 1+x+x^6+x^10+x^14 */
"1100000000000001", /* 15 1+x+x^15 */
"11010000000010001" /* 16 1+x+x^3+x^12+x^16 */
};
/*
* To speed up computations, we have tables for logarithm, exponent
* and inverse of a number. If GF_BITS <= 8, we use a table for
* multiplication as well (it takes 64K, no big deal even on a PDA,
* especially because it can be pre-initialized an put into a ROM!),
* otherwhise we use a table of logarithms.
* In any case the macro gf_mul(x,y) takes care of multiplications.
*/
static gf gf_exp[2*GF_SIZE]; /* index->poly form conversion table */
static int gf_log[GF_SIZE + 1]; /* Poly->index form conversion table */
static gf inverse[GF_SIZE+1]; /* inverse of field elem. */
/* inv[\alpha**i]=\alpha**(GF_SIZE-i-1) */
/*
* modnn(x) computes x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1,
* without a slow divide.
*/
static inline gf
modnn(int x)
{
while (x >= GF_SIZE) {
x -= GF_SIZE;
x = (x >> GF_BITS) + (x & GF_SIZE);
}
return x;
}
#define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}
/*
* gf_mul(x,y) multiplies two numbers. If GF_BITS<=8, it is much
* faster to use a multiplication table.
*
* USE_GF_MULC, GF_MULC0(c) and GF_ADDMULC(x) can be used when multiplying
* many numbers by the same constant. In this case the first
* call sets the constant, and others perform the multiplications.
* A value related to the multiplication is held in a local variable
* declared with USE_GF_MULC . See usage in addmul1().
*/
static gf gf_mul_table[(GF_SIZE + 1)*(GF_SIZE + 1)]
#ifdef WINDOWS
__attribute__((aligned (16)))
#else
__attribute__((aligned (256)))
#endif
;
#define gf_mul(x,y) gf_mul_table[(x<<8)+y]
#define USE_GF_MULC register gf * __gf_mulc_
#define GF_MULC0(c) __gf_mulc_ = &gf_mul_table[(c)<<8]
#define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]
#define GF_MULC(dst, x) dst = __gf_mulc_[x]
static void
init_mul_table(void)
{
int i, j;
for (i=0; i< GF_SIZE+1; i++)
for (j=0; j< GF_SIZE+1; j++)
gf_mul_table[(i<<8)+j] = gf_exp[modnn(gf_log[i] + gf_log[j]) ] ;
for (j=0; j< GF_SIZE+1; j++)
gf_mul_table[j] = gf_mul_table[j<<8] = 0;
}
/*
* Generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
* Lookup tables:
* index->polynomial form gf_exp[] contains j= \alpha^i;
* polynomial form -> index form gf_log[ j = \alpha^i ] = i
* \alpha=x is the primitive element of GF(2^m)
*
* For efficiency, gf_exp[] has size 2*GF_SIZE, so that a simple
* multiplication of two numbers can be resolved without calling modnn
*/
/*
* initialize the data structures used for computations in GF.
*/
static void
generate_gf(void)
{
int i;
gf mask;
char *Pp = allPp[GF_BITS] ;
mask = 1; /* x ** 0 = 1 */
gf_exp[GF_BITS] = 0; /* will be updated at the end of the 1st loop */
/*
* first, generate the (polynomial representation of) powers of \alpha,
* which are stored in gf_exp[i] = \alpha ** i .
* At the same time build gf_log[gf_exp[i]] = i .
* The first GF_BITS powers are simply bits shifted to the left.
*/
for (i = 0; i < GF_BITS; i++, mask <<= 1 ) {
gf_exp[i] = mask;
gf_log[gf_exp[i]] = i;
/*
* If Pp[i] == 1 then \alpha ** i occurs in poly-repr
* gf_exp[GF_BITS] = \alpha ** GF_BITS
*/
if ( Pp[i] == '1' )
gf_exp[GF_BITS] ^= mask;
}
/*
* now gf_exp[GF_BITS] = \alpha ** GF_BITS is complete, so can als
* compute its inverse.
*/
gf_log[gf_exp[GF_BITS]] = GF_BITS;
/*
* Poly-repr of \alpha ** (i+1) is given by poly-repr of
* \alpha ** i shifted left one-bit and accounting for any
* \alpha ** GF_BITS term that may occur when poly-repr of
* \alpha ** i is shifted.
*/
mask = 1 << (GF_BITS - 1 ) ;
for (i = GF_BITS + 1; i < GF_SIZE; i++) {
if (gf_exp[i - 1] >= mask)
gf_exp[i] = gf_exp[GF_BITS] ^ ((gf_exp[i - 1] ^ mask) << 1);
else
gf_exp[i] = gf_exp[i - 1] << 1;
gf_log[gf_exp[i]] = i;
}
/*
* log(0) is not defined, so use a special value
*/
gf_log[0] = GF_SIZE ;
/* set the extended gf_exp values for fast multiply */
for (i = 0 ; i < GF_SIZE ; i++)
gf_exp[i + GF_SIZE] = gf_exp[i] ;
/*
* again special cases. 0 has no inverse. This used to
* be initialized to GF_SIZE, but it should make no difference
* since noone is supposed to read from here.
*/
inverse[0] = 0 ;
inverse[1] = 1;
for (i=2; i<=GF_SIZE; i++)
inverse[i] = gf_exp[GF_SIZE-gf_log[i]];
}
/*
* Various linear algebra operations that i use often.
*/
/*
* addmul() computes dst[] = dst[] + c * src[]
* This is used often, so better optimize it! Currently the loop is
* unrolled 16 times, a good value for 486 and pentium-class machines.
* The case c=0 is also optimized, whereas c=1 is not. These
* calls are unfrequent in my typical apps so I did not bother.
*
* Note that gcc on
*/
#if 0
#define addmul(dst, src, c, sz) \
if (c != 0) addmul1(dst, src, c, sz)
#endif
#define UNROLL 16 /* 1, 4, 8, 16 */
static void
slow_addmul1(gf *dst1, gf *src1, gf c, int sz)
{
USE_GF_MULC ;
register gf *dst = dst1, *src = src1 ;
gf *lim = &dst[sz - UNROLL + 1] ;
GF_MULC0(c) ;
#if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
for (; dst < lim ; dst += UNROLL, src += UNROLL ) {
GF_ADDMULC( dst[0] , src[0] );
GF_ADDMULC( dst[1] , src[1] );
GF_ADDMULC( dst[2] , src[2] );
GF_ADDMULC( dst[3] , src[3] );
#if (UNROLL > 4)
GF_ADDMULC( dst[4] , src[4] );
GF_ADDMULC( dst[5] , src[5] );
GF_ADDMULC( dst[6] , src[6] );
GF_ADDMULC( dst[7] , src[7] );
#endif
#if (UNROLL > 8)
GF_ADDMULC( dst[8] , src[8] );
GF_ADDMULC( dst[9] , src[9] );
GF_ADDMULC( dst[10] , src[10] );
GF_ADDMULC( dst[11] , src[11] );
GF_ADDMULC( dst[12] , src[12] );
GF_ADDMULC( dst[13] , src[13] );
GF_ADDMULC( dst[14] , src[14] );
GF_ADDMULC( dst[15] , src[15] );
#endif
}
#endif
lim += UNROLL - 1 ;
for (; dst < lim; dst++, src++ ) /* final components */
GF_ADDMULC( *dst , *src );
}
#if defined i386 && defined USE_ASSEMBLER
#define LOOPSIZE 8
static void
addmul1(gf *dst1, gf *src1, gf c, int sz)
{
USE_GF_MULC ;
GF_MULC0(c) ;
if(((unsigned long)dst1 % LOOPSIZE) ||
((unsigned long)src1 % LOOPSIZE) ||
(sz % LOOPSIZE)) {
slow_addmul1(dst1, src1, c, sz);
return;
}
asm volatile("xorl %%eax,%%eax;\n"
" xorl %%edx,%%edx;\n"
".align 32;\n"
"1:"
" addl $8, %%edi;\n"
" movb (%%esi), %%al;\n"
" movb 4(%%esi), %%dl;\n"
" movb (%%ebx,%%eax), %%al;\n"
" movb (%%ebx,%%edx), %%dl;\n"
" xorb %%al, (%%edi);\n"
" xorb %%dl, 4(%%edi);\n"
" movb 1(%%esi), %%al;\n"
" movb 5(%%esi), %%dl;\n"
" movb (%%ebx,%%eax), %%al;\n"
" movb (%%ebx,%%edx), %%dl;\n"
" xorb %%al, 1(%%edi);\n"
" xorb %%dl, 5(%%edi);\n"
" movb 2(%%esi), %%al;\n"
" movb 6(%%esi), %%dl;\n"
" movb (%%ebx,%%eax), %%al;\n"
" movb (%%ebx,%%edx), %%dl;\n"
" xorb %%al, 2(%%edi);\n"
" xorb %%dl, 6(%%edi);\n"
" movb 3(%%esi), %%al;\n"
" movb 7(%%esi), %%dl;\n"
" addl $8, %%esi;\n"
" movb (%%ebx,%%eax), %%al;\n"
" movb (%%ebx,%%edx), %%dl;\n"
" xorb %%al, 3(%%edi);\n"
" xorb %%dl, 7(%%edi);\n"
" cmpl %%ecx, %%esi;\n"
" jb 1b;"
: :
"b" (__gf_mulc_),
"D" (dst1-8),
"S" (src1),
"c" (sz+src1) :
"memory", "eax", "edx"
);
}
#else
# define addmul1 slow_addmul1
#endif
static void addmul(gf *dst, gf *src, gf c, int sz) {
// fprintf(stderr, "Dst=%p Src=%p, gf=%02x sz=%d\n", dst, src, c, sz);
if (c != 0) addmul1(dst, src, c, sz);
}
/*
* mul() computes dst[] = c * src[]
* This is used often, so better optimize it! Currently the loop is
* unrolled 16 times, a good value for 486 and pentium-class machines.
* The case c=0 is also optimized, whereas c=1 is not. These
* calls are unfrequent in my typical apps so I did not bother.
*
* Note that gcc on
*/
#if 0
#define mul(dst, src, c, sz) \
do { if (c != 0) mul1(dst, src, c, sz); else memset(dst, 0, sz); } while(0)
#endif
#define UNROLL 16 /* 1, 4, 8, 16 */
static void
slow_mul1(gf *dst1, gf *src1, gf c, int sz)
{
USE_GF_MULC ;
register gf *dst = dst1, *src = src1 ;
gf *lim = &dst[sz - UNROLL + 1] ;
GF_MULC0(c) ;
#if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
for (; dst < lim ; dst += UNROLL, src += UNROLL ) {
GF_MULC( dst[0] , src[0] );
GF_MULC( dst[1] , src[1] );
GF_MULC( dst[2] , src[2] );
GF_MULC( dst[3] , src[3] );
#if (UNROLL > 4)
GF_MULC( dst[4] , src[4] );
GF_MULC( dst[5] , src[5] );
GF_MULC( dst[6] , src[6] );
GF_MULC( dst[7] , src[7] );
#endif
#if (UNROLL > 8)
GF_MULC( dst[8] , src[8] );
GF_MULC( dst[9] , src[9] );
GF_MULC( dst[10] , src[10] );
GF_MULC( dst[11] , src[11] );
GF_MULC( dst[12] , src[12] );
GF_MULC( dst[13] , src[13] );
GF_MULC( dst[14] , src[14] );
GF_MULC( dst[15] , src[15] );
#endif
}
#endif
lim += UNROLL - 1 ;
for (; dst < lim; dst++, src++ ) /* final components */
GF_MULC( *dst , *src );
}
#if defined i386 && defined USE_ASSEMBLER
static void
mul1(gf *dst1, gf *src1, gf c, int sz)
{
USE_GF_MULC ;
GF_MULC0(c) ;
if(((unsigned long)dst1 % LOOPSIZE) ||
((unsigned long)src1 % LOOPSIZE) ||
(sz % LOOPSIZE)) {
slow_mul1(dst1, src1, c, sz);
return;
}
asm volatile("pushl %%eax;\n"
"pushl %%edx;\n"
"xorl %%eax,%%eax;\n"
" xorl %%edx,%%edx;\n"
"1:"
" addl $8, %%edi;\n"
" movb (%%esi), %%al;\n"
" movb 4(%%esi), %%dl;\n"
" movb (%%ebx,%%eax), %%al;\n"
" movb (%%ebx,%%edx), %%dl;\n"
" movb %%al, (%%edi);\n"
" movb %%dl, 4(%%edi);\n"
" movb 1(%%esi), %%al;\n"
" movb 5(%%esi), %%dl;\n"
" movb (%%ebx,%%eax), %%al;\n"
" movb (%%ebx,%%edx), %%dl;\n"
" movb %%al, 1(%%edi);\n"
" movb %%dl, 5(%%edi);\n"
" movb 2(%%esi), %%al;\n"
" movb 6(%%esi), %%dl;\n"
" movb (%%ebx,%%eax), %%al;\n"
" movb (%%ebx,%%edx), %%dl;\n"
" movb %%al, 2(%%edi);\n"
" movb %%dl, 6(%%edi);\n"
" movb 3(%%esi), %%al;\n"
" movb 7(%%esi), %%dl;\n"
" addl $8, %%esi;\n"
" movb (%%ebx,%%eax), %%al;\n"
" movb (%%ebx,%%edx), %%dl;\n"
" movb %%al, 3(%%edi);\n"
" movb %%dl, 7(%%edi);\n"
" cmpl %%ecx, %%esi;\n"
" jb 1b;\n"
" popl %%edx;\n"
" popl %%eax;"
: :
"b" (__gf_mulc_),
"D" (dst1-8),
"S" (src1),
"c" (sz+src1) :
"memory", "eax", "edx"
);
}
#else
# define mul1 slow_mul1
#endif
static inline void mul(gf *dst, gf *src, gf c, int sz) {
/*fprintf(stderr, "%p = %02x * %p\n", dst, c, src);*/
if (c != 0) mul1(dst, src, c, sz); else memset(dst, 0, sz);
}
/*
* invert_mat() takes a matrix and produces its inverse
* k is the size of the matrix.
* (Gauss-Jordan, adapted from Numerical Recipes in C)
* Return non-zero if singular.
*/
DEB( int pivloops=0; int pivswaps=0 ; /* diagnostic */)
static int
invert_mat(gf *src, int k)
{
gf c, *p ;
int irow, icol, row, col, i, ix ;
int error = 1 ;
int indxc[k];
int indxr[k];
int ipiv[k];
gf id_row[k];
memset(id_row, 0, k*sizeof(gf));
DEB( pivloops=0; pivswaps=0 ; /* diagnostic */ )
/*
* ipiv marks elements already used as pivots.
*/
for (i = 0; i < k ; i++)
ipiv[i] = 0 ;
for (col = 0; col < k ; col++) {
gf *pivot_row ;
/*
* Zeroing column 'col', look for a non-zero element.
* First try on the diagonal, if it fails, look elsewhere.
*/
irow = icol = -1 ;
if (ipiv[col] != 1 && src[col*k + col] != 0) {
irow = col ;
icol = col ;
goto found_piv ;
}
for (row = 0 ; row < k ; row++) {
if (ipiv[row] != 1) {
for (ix = 0 ; ix < k ; ix++) {
DEB( pivloops++ ; )
if (ipiv[ix] == 0) {
if (src[row*k + ix] != 0) {
irow = row ;
icol = ix ;
goto found_piv ;
}
} else if (ipiv[ix] > 1) {
fprintf(stderr, "singular matrix\n");
goto fail ;
}
}
}
}
if (icol == -1) {
fprintf(stderr, "XXX pivot not found!\n");
goto fail ;
}
found_piv:
++(ipiv[icol]) ;
/*
* swap rows irow and icol, so afterwards the diagonal
* element will be correct. Rarely done, not worth
* optimizing.
*/
if (irow != icol) {
for (ix = 0 ; ix < k ; ix++ ) {
SWAP( src[irow*k + ix], src[icol*k + ix], gf) ;
}
}
indxr[col] = irow ;
indxc[col] = icol ;
pivot_row = &src[icol*k] ;
c = pivot_row[icol] ;
if (c == 0) {
fprintf(stderr, "singular matrix 2\n");
goto fail ;
}
if (c != 1 ) { /* otherwhise this is a NOP */
/*
* this is done often , but optimizing is not so
* fruitful, at least in the obvious ways (unrolling)
*/
DEB( pivswaps++ ; )
c = inverse[ c ] ;
pivot_row[icol] = 1 ;
for (ix = 0 ; ix < k ; ix++ )
pivot_row[ix] = gf_mul(c, pivot_row[ix] );
}
/*
* from all rows, remove multiples of the selected row
* to zero the relevant entry (in fact, the entry is not zero
* because we know it must be zero).
* (Here, if we know that the pivot_row is the identity,
* we can optimize the addmul).
*/
id_row[icol] = 1;
if (memcmp(pivot_row, id_row, k*sizeof(gf)) != 0) {
for (p = src, ix = 0 ; ix < k ; ix++, p += k ) {
if (ix != icol) {
c = p[icol] ;
p[icol] = 0 ;
addmul(p, pivot_row, c, k );
}
}
}
id_row[icol] = 0;
} /* done all columns */
for (col = k-1 ; col >= 0 ; col-- ) {
if (indxr[col] <0 || indxr[col] >= k)
fprintf(stderr, "AARGH, indxr[col] %d\n", indxr[col]);
else if (indxc[col] <0 || indxc[col] >= k)
fprintf(stderr, "AARGH, indxc[col] %d\n", indxc[col]);
else
if (indxr[col] != indxc[col] ) {
for (row = 0 ; row < k ; row++ ) {
SWAP( src[row*k + indxr[col]], src[row*k + indxc[col]], gf) ;
}
}
}
error = 0 ;
fail:
return error ;
}
static int fec_initialized = 0 ;
void fec_init(void)
{
TICK(ticks[0]);
generate_gf();
TOCK(ticks[0]);
DDB(fprintf(stderr, "generate_gf took %ldus\n", ticks[0]);)
TICK(ticks[0]);
init_mul_table();
TOCK(ticks[0]);
DDB(fprintf(stderr, "init_mul_table took %ldus\n", ticks[0]);)
fec_initialized = 1 ;
}
/**
* Simplified re-implementation of Fec-Bourbon
*
* Following changes have been made:
* 1. Avoid unnecessary copying of block data.
* 2. Avoid expliciting matrixes, if we are only going to use one row
* anyways
* 3. Pick coefficients of Vandermonde matrix in such a way as to get
* a "nicer" systematic matrix, such as for instance the following:
* 1 0 0 0 0 0 0 0
* 0 1 0 0 0 0 0 0
* 0 0 1 0 0 0 0 0
* 0 0 0 1 0 0 0 0
* 0 0 0 0 1 0 0 0
* 0 0 0 0 0 1 0 0
* 0 0 0 0 0 0 1 0
* 0 0 0 0 0 0 0 1
* a b c d e f g h
* b a d c f e h g
* c d a b g h e f
* d c b a h g f e
*
* This makes it easyer on processor cache, because we keep on reusing the
* same small part of the multiplication table.
* The trick to obtain this is to use k=128 and n=256. Use x=col for
* top matrix (rather than exp(col-1) as the original did). This makes
* the "inverting" polynom to be the following (coefficients of col
* col of inverse of top Vandermonde matrix)
*
* _____
* | |
* P = K | | (x - i)
* col col | |
* 0 < i < 128 &&
* i != col
*
* K_col must be chosen such that P_col(col) = 1, thus
*
* 1
* ---------------
* K = _____
* col | |
* | | (col - i)
* | |
* 0 < i < 128 &&
* i != col
*
* For obvious reasons, all (col-i)'s are different foreach i (because
* col constant). Moreoveover, none has the high bit set (because both
* col and i have high bit unset and +/- is really a xor). Moreover
* 0 is not among them (because i != col). This means that we calculate
* the product of all values for 1 to 0x7f, and we have eliminated
* dependancy on col. K_col can be written just k.
*
* Which make P_col resolves to:
* _____
* | |
* P = K | | (x - i)
* col | |
* 0 < i < 128
* -------------------
* (x-col)
*
* When evaluating this for any x > 0x80, the following thing happens
* to the numerator: all (x-i) are different for i, and have high bit
* set. Thus, the set of top factors are all values from 0x80 to 0xff,
* and the numerator becomes independant from x (as long as x & 0x80 = 0)
* Thus, P_col(x) = L / (x-col)
* In the systematic matrix value on [row,col] is P_col(row) = L/(row-col)
* To simplify we multiply each bottom row by 1/L (which is a simple
* scaling operation, and should not affect invertibility of any partial
* matrix contained therein), and we get S[row,col] = 1/(row-col)
* Benefits of all this:
* - no complicated encoding matrix to compute (it's just the inverse
* table!)
* - cache efficiency when multiplying blocks, because we get to
* reuse the same coefficients. Probability of mult table already in
* cache increases.
* Downside:
* - less flexibility: we can for instance not do 240/200, because
* 200 is more than 128, and using this technique we unfortunately
* limited number of data blocks to 128 instead of 256 as would be
* possible otherwise
*/
/* We do the matrix multiplication columns by column, instead of the
* usual row-by-row, in order to capitalize on the cache freshness of
* each data block . The data block only needs to be fetched once, and
* can be used to be addmull'ed into all FEC blocks at once. No need
* to worry about evicting FEC blocks from the cache: those are so
* few (typically, 4 or 8) that they will fit easily in the cache (even
* in the L2 cache...)
*/
void fec_encode(int blockSize,
unsigned char **data_blocks,
int nrDataBlocks,
unsigned char **fec_blocks,
int nrFecBlocks)
{
int blockNo; /* loop for block counter */
int row, col;
assert(fec_initialized);
assert(nrDataBlocks <= 128);
assert(nrFecBlocks <= 128);
if(!nrDataBlocks)
return;
for(row=0; row < nrFecBlocks; row++)
mul(fec_blocks[row], data_blocks[0], inverse[128 ^ row], blockSize);
for(col=129, blockNo=1; blockNo < nrDataBlocks; col++, blockNo ++) {
for(row=0; row < nrFecBlocks; row++)
addmul(fec_blocks[row], data_blocks[blockNo],
inverse[row ^ col],
blockSize);
}
}
/**
* Reduce the system by substracting all received data blocks from FEC blocks
* This will allow to resolve the system by inverting a much smaller matrix
* (with size being number of blocks lost, rather than number of data blocks
* + fec)
*/
static inline void reduce(int blockSize,
unsigned char **data_blocks,
int nr_data_blocks,
unsigned char **fec_blocks,
unsigned int *fec_block_nos,
unsigned int *erased_blocks,
short nr_fec_blocks)
{
int erasedIdx=0;
int col;
/* First we reduce the code vector by substracting all known elements
* (non-erased data packets) */
for(col=0; col<nr_data_blocks; col++) {
if(erasedIdx < nr_fec_blocks && erased_blocks[erasedIdx] == col) {
erasedIdx++;
} else {
unsigned char *src = data_blocks[col];
int j;
for(j=0; j < nr_fec_blocks; j++) {
int blno = fec_block_nos[j];
addmul(fec_blocks[j],src,inverse[blno^col^128],blockSize);
}
}
}
assert(nr_fec_blocks == erasedIdx);
}
#ifdef PROFILE
static long long rdtsc(void)
{
unsigned long low, hi;
asm volatile ("rdtsc" : "=d" (hi), "=a" (low));
return ( (((long long)hi) << 32) | ((long long) low));
}
long long reduceTime = 0;
long long resolveTime =0;
long long invTime =0;
#endif
/**
* Resolves reduced system. Constructs "mini" encoding matrix, inverts
* it, and multiply reduced vector by it.
*/
static inline void resolve(int blockSize,
unsigned char **data_blocks,
int nr_data_blocks,
unsigned char **fec_blocks,
unsigned int *fec_block_nos,
unsigned int *erased_blocks,
short nr_fec_blocks)
{
#ifdef PROFILE
long long begin;
#endif
/* construct matrix */
int row;
unsigned char matrix[nr_fec_blocks*nr_fec_blocks];
int ptr;
int r;
/* we pick the submatrix of code that keeps colums corresponding to
* the erased data blocks, and rows corresponding to the present FEC
* blocks. This is the matrix by which we would need to multiply the
* missing data blocks to obtain the FEC blocks we have */
for(row = 0, ptr=0; row < nr_fec_blocks; row++) {
int col;
int irow = 128 + fec_block_nos[row];
/*assert(irow < fec_blocks+128);*/
for(col = 0; col < nr_fec_blocks; col++, ptr++) {
int icol = erased_blocks[col];
matrix[ptr] = inverse[irow ^ icol];
}
}
#ifdef PROFILE
begin = rdtsc();
#endif
r=invert_mat(matrix, nr_fec_blocks);
#ifdef PROFILE
invTime += rdtsc()-begin;
#endif
if(r) {
int col;
fprintf(stderr,"Pivot not found\n");
fprintf(stderr, "Rows: ");
for(row=0; row<nr_fec_blocks; row++)
fprintf(stderr, "%d ", 128 + fec_block_nos[row]);
fprintf(stderr, "\n");
fprintf(stderr, "Columns: ");
for(col = 0; col < nr_fec_blocks; col++, ptr++)
fprintf(stderr, "%d ", erased_blocks[col]);
fprintf(stderr, "\n");
assert(0);
}
/* do the multiplication with the reduced code vector */
for(row = 0, ptr=0; row < nr_fec_blocks; row++) {
int col;
unsigned char *target = data_blocks[erased_blocks[row]];
mul(target,fec_blocks[0],matrix[ptr++],blockSize);
for(col = 1; col < nr_fec_blocks; col++,ptr++) {
addmul(target,fec_blocks[col],matrix[ptr],blockSize);
}
}
}
void fec_decode(int blockSize,
unsigned char **data_blocks,
int nr_data_blocks,
unsigned char **fec_blocks,
unsigned int *fec_block_nos,
unsigned int *erased_blocks,
short nr_fec_blocks)
{
#ifdef PROFILE
long long begin;
long long end;
#endif
#ifdef PROFILE
begin = rdtsc();
#endif
reduce(blockSize, data_blocks, nr_data_blocks,
fec_blocks, fec_block_nos, erased_blocks, nr_fec_blocks);
#ifdef PROFILE
end = rdtsc();
reduceTime += end - begin;
begin = end;
#endif
resolve(blockSize, data_blocks, nr_data_blocks,
fec_blocks, fec_block_nos, erased_blocks,
nr_fec_blocks);
#ifdef PROFILE
end = rdtsc();
resolveTime += end - begin;
#endif
}
#ifdef PROFILE
void printDetail(void) {
fprintf(stderr, "red=%9lld\nres=%9lld\ninv=%9lld\n",
reduceTime, resolveTime, invTime);
}
#endif
void fec_license(void)
{
fprintf(stderr,
" udpcast and its FEC code are free software\n"
"\n"
" you can redistribute udpcast core functionality and/or\n"
" it them under the terms of the GNU General Public License as\n"
" published by the Free Software Foundation; either version 2 of\n"
" the License, or (at your option) any later version.\n"
"\n"
" This program is distributed in the hope that it will be useful,\n"
" but WITHOUT ANY WARRANTY; without even the implied warranty of\n"
" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n"
" GNU General Public License for more details.\n"
"\n"
" You should have received a copy of the GNU General Public License\n"
" along with this program; see the file COPYING.\n"
" If not, write to the Free Software Foundation, Inc.,\n"
" 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.\n"
"\n"
" Alain Knaff\n"
" <alain@knaff.lu>\n"
" http://udpcast.linux.lu/\n"
"\n"
"the FEC code is covered by the following license:\n"
"fec.c -- forward error correction based on Vandermonde matrices\n"
"980624\n"
"(C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it)\n"
"(C) 2001 Alain Knaff (alain@knaff.lu)\n"
"\n"
"Portions derived from code by Phil Karn (karn@ka9q.ampr.org),\n"
"Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari\n"
"Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995\n"
"\n"
"Redistribution and use in source and binary forms, with or without\n"
"modification, are permitted provided that the following conditions\n"
"are met:\n"
"\n"
"1. Redistributions of source code must retain the above copyright\n"
" notice, this list of conditions and the following disclaimer.\n"
"2. Redistributions in binary form must reproduce the above\n"
" copyright notice, this list of conditions and the following\n"
" disclaimer in the documentation and/or other materials\n"
" provided with the distribution.\n"
"\n"
"THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND\n"
"ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,\n"
"THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A\n"
"PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS\n"
"BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,\n"
"OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,\n"
"PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,\n"
"OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY\n"
"THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR\n"
"TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT\n"
"OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY\n"
"OF SUCH DAMAGE.\n"
);
exit(0);
}
#endif
|