1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
|
/* meparser.cpp
Copyright (c) 2019, Nikolaj Schlej. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*/
#include <map>
#include "ffs.h"
#include "me.h"
#include "meparser.h"
#include "parsingdata.h"
#include "utility.h"
#ifdef U_ENABLE_ME_PARSING_SUPPORT
struct FPT_PARTITION_INFO {
FPT_HEADER_ENTRY ptEntry;
UINT8 type;
UModelIndex index;
friend bool operator< (const FPT_PARTITION_INFO & lhs, const FPT_PARTITION_INFO & rhs){ return lhs.ptEntry.Offset < rhs.ptEntry.Offset; }
};
struct IFWI_PARTITION_INFO {
IFWI_HEADER_ENTRY ptEntry;
UINT8 type;
UINT8 subtype;
friend bool operator< (const IFWI_PARTITION_INFO & lhs, const IFWI_PARTITION_INFO & rhs){ return lhs.ptEntry.Offset < rhs.ptEntry.Offset; }
};
USTATUS MeParser::parseMeRegionBody(const UModelIndex & index)
{
// Sanity check
if (!index.isValid())
return U_INVALID_PARAMETER;
// Obtain ME region
UByteArray meRegion = model->body(index);
// Check region size
if ((UINT32)meRegion.size() < ME_ROM_BYPASS_VECTOR_SIZE + sizeof(UINT32)) {
msg(usprintf("%s: ME region too small to fit ROM bypass vector", __FUNCTION__), index);
return U_INVALID_ME_PARTITION_TABLE;
}
// Check ME signature to determine it's version
// ME v11 and older layout
if (*(UINT32*)meRegion.constData() == FPT_HEADER_SIGNATURE || *(UINT32*)(meRegion.constData() + ME_ROM_BYPASS_VECTOR_SIZE) == FPT_HEADER_SIGNATURE) {
UModelIndex ptIndex;
return parseFptRegion(meRegion, index, ptIndex);
}
// IFWI 1.6
// Check region size
if ((UINT32)meRegion.size() < sizeof(IFWI_16_LAYOUT_HEADER)) {
msg(usprintf("%s: ME region too small to fit IFWI 1.6 layout header", __FUNCTION__), index);
return U_INVALID_ME_PARTITION_TABLE;
}
const IFWI_16_LAYOUT_HEADER* ifwi16Header = (const IFWI_16_LAYOUT_HEADER*)meRegion.constData();
// Check region size
if ((UINT32)meRegion.size() < ifwi16Header->DataPartition.Offset + sizeof(UINT32)) {
msg(usprintf("%s: ME region too small to fit IFWI 1.6 data partition", __FUNCTION__), index);
return U_INVALID_ME_PARTITION_TABLE;
}
// Data partition always points to FPT header
if (*(UINT32*)(meRegion.constData() + ifwi16Header->DataPartition.Offset) == FPT_HEADER_SIGNATURE) {
UModelIndex ptIndex;
return parseIfwi16Region(meRegion, index, ptIndex);
}
// IFWI 1.7
if ((UINT32)meRegion.size() < sizeof(IFWI_17_LAYOUT_HEADER)) {
msg(usprintf("%s: ME region too small to fit IFWI 1.7 layout header", __FUNCTION__), index);
return U_INVALID_ME_PARTITION_TABLE;
}
const IFWI_17_LAYOUT_HEADER* ifwi17Header = (const IFWI_17_LAYOUT_HEADER*)meRegion.constData();
// Check region size
if ((UINT32)meRegion.size() < ifwi17Header->DataPartition.Offset + sizeof(UINT32)) {
msg(usprintf("%s: ME region too small to fit IFWI 1.7 data partition", __FUNCTION__), index);
return U_INVALID_ME_PARTITION_TABLE;
}
// Data partition always points to FPT header
if (*(UINT32*)(meRegion.constData() + ifwi17Header->DataPartition.Offset)== FPT_HEADER_SIGNATURE) {
UModelIndex ptIndex;
return parseIfwi17Region(meRegion, index, ptIndex);
}
// Something else entirely
msg(usprintf("%s: unknown ME region format", __FUNCTION__), index);
return U_INVALID_ME_PARTITION_TABLE;
}
USTATUS MeParser::parseFptRegion(const UByteArray & region, const UModelIndex & parent, UModelIndex & index)
{
// Check region size
if ((UINT32)region.size() < sizeof(FPT_HEADER)) {
msg(usprintf("%s: region too small to fit the FPT partition table header", __FUNCTION__), parent);
return U_INVALID_ME_PARTITION_TABLE;
}
// Populate partition table header
const FPT_HEADER* ptHeader = (const FPT_HEADER*)region.constData();
UINT32 romBypassVectorSize = 0;
if (*(UINT32*)region.constData() != FPT_HEADER_SIGNATURE) {
// Adjust the header to skip ROM bypass vector
romBypassVectorSize = ME_ROM_BYPASS_VECTOR_SIZE;
ptHeader = (const FPT_HEADER*)(region.constData() + romBypassVectorSize);
}
// Check region size again
UINT32 ptBodySize = ptHeader->NumEntries * sizeof(FPT_HEADER_ENTRY);
UINT32 ptSize = romBypassVectorSize + sizeof(FPT_HEADER) + ptBodySize;
if ((UINT32)region.size() < ptSize) {
msg(usprintf("%s: ME region too small to fit the FPT partition table", __FUNCTION__), parent);
return U_INVALID_ME_PARTITION_TABLE;
}
// Get info
UByteArray header = region.left(romBypassVectorSize + sizeof(FPT_HEADER));
UByteArray body = region.mid(header.size(), ptBodySize);
UString name = UString("FPT partition table");
UString info;
// Special case of FPT header version 2.1
if (ptHeader->HeaderVersion == FPT_HEADER_VERSION_21) {
const FPT_HEADER_21* ptHeader21 = (const FPT_HEADER_21*)ptHeader;
info = usprintf("Full size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nROM bypass vector: %s\nNumber of entries: %u\nHeader version: %02Xh\nEntry version: %02Xh\n"
"Header length: %02Xh\nFlags: %Xh\nTicks to add: %04Xh\nTokens to add: %04Xh\nSPS Flags: %Xh\nFITC version: %u.%u.%u.%u\nCRC32 Checksum: %08Xh",
ptSize, ptSize,
(UINT32)header.size(), (UINT32)header.size(),
ptBodySize, ptBodySize,
(romBypassVectorSize ? "present" : "absent"),
ptHeader21->NumEntries,
ptHeader21->HeaderVersion,
ptHeader21->EntryVersion,
ptHeader21->HeaderLength,
ptHeader21->Flags,
ptHeader21->TicksToAdd,
ptHeader21->TokensToAdd,
ptHeader21->SPSFlags,
ptHeader21->FitcMajor, ptHeader21->FitcMinor, ptHeader21->FitcHotfix, ptHeader21->FitcBuild,
ptHeader21->HeaderCrc32);
// TODO: verify header crc32
}
// Default handling for all other versions, may be too generic in some corner cases
else {
info = usprintf("Full size: %Xh (%u)\nHeader size: %Xh (%u)\nBody size: %Xh (%u)\nROM bypass vector: %s\nNumber of entries: %u\nHeader version: %02Xh\nEntry version: %02Xh\n"
"Header length: %02Xh\nFlash cycle life: %04Xh\nFlash cycle limit: %04Xh\nUMA size: %Xh\nFlags: %Xh\nFITC version: %u.%u.%u.%u\nChecksum: %02Xh",
ptSize, ptSize,
(UINT32)header.size(), (UINT32)header.size(),
ptBodySize, ptBodySize,
(romBypassVectorSize ? "present" : "absent"),
ptHeader->NumEntries,
ptHeader->HeaderVersion,
ptHeader->EntryVersion,
ptHeader->HeaderLength,
ptHeader->FlashCycleLife,
ptHeader->FlashCycleLimit,
ptHeader->UmaSize,
ptHeader->Flags,
ptHeader->FitcMajor, ptHeader->FitcMinor, ptHeader->FitcHotfix, ptHeader->FitcBuild,
ptHeader->HeaderChecksum);
// TODO: verify header checksum8
}
// Add tree item
index = model->addItem(0, Types::FptStore, 0, name, UString(), info, header, body, UByteArray(), Fixed, parent);
// Add partition table entries
std::vector<FPT_PARTITION_INFO> partitions;
UINT32 offset = (UINT32)header.size();
UINT32 numEntries = ptHeader->NumEntries;
const FPT_HEADER_ENTRY* firstPtEntry = (const FPT_HEADER_ENTRY*)(region.constData() + offset);
for (UINT32 i = 0; i < numEntries; i++) {
// Populate entry header
const FPT_HEADER_ENTRY* ptEntry = firstPtEntry + i;
// Get info
name = visibleAsciiOrHex((UINT8*)ptEntry->Name, 4);
info = usprintf("Full size: %Xh (%u)\nPartition offset: %Xh\nPartition length: %Xh\nPartition type: %02Xh",
(UINT32)sizeof(FPT_HEADER_ENTRY), (UINT32)sizeof(FPT_HEADER_ENTRY),
ptEntry->Offset,
ptEntry->Size,
ptEntry->Type);
// Add tree item
const UINT8 type = (ptEntry->Offset != 0 && ptEntry->Offset != 0xFFFFFFFF && ptEntry->Size != 0 && ptEntry->EntryValid != 0xFF) ? Subtypes::ValidFptEntry : Subtypes::InvalidFptEntry;
UModelIndex entryIndex = model->addItem(offset, Types::FptEntry, type, name, UString(), info, UByteArray(), UByteArray((const char*)ptEntry, sizeof(FPT_HEADER_ENTRY)), UByteArray(), Fixed, index);
// Adjust offset
offset += sizeof(FPT_HEADER_ENTRY);
// Add valid partitions
if (type == Subtypes::ValidFptEntry) { // Skip absent and invalid partitions
// Add to partitions vector
FPT_PARTITION_INFO partition = {};
partition.type = Types::FptPartition;
partition.ptEntry = *ptEntry;
partition.index = entryIndex;
partitions.push_back(partition);
}
}
// Check for empty set of partitions
if (partitions.empty()) {
// Add a single padding partition in this case
FPT_PARTITION_INFO padding = {};
padding.ptEntry.Offset = offset;
padding.ptEntry.Size = (UINT32)(region.size() - padding.ptEntry.Offset);
padding.type = Types::Padding;
partitions.push_back(padding);
}
make_partition_table_consistent:
if (partitions.empty()) {
return U_INVALID_ME_PARTITION_TABLE;
}
// Sort partitions by offset
std::sort(partitions.begin(), partitions.end());
// Check for intersections and paddings between partitions
FPT_PARTITION_INFO padding = {};
// Check intersection with the partition table header
if (partitions.front().ptEntry.Offset < ptSize) {
msg(usprintf("%s: ME partition has intersection with ME partition table, skipped", __FUNCTION__),
partitions.front().index);
partitions.erase(partitions.begin());
goto make_partition_table_consistent;
}
// Check for padding between partition table and the first partition
else if (partitions.front().ptEntry.Offset > ptSize) {
padding.ptEntry.Offset = ptSize;
padding.ptEntry.Size = partitions.front().ptEntry.Offset - ptSize;
padding.type = Types::Padding;
partitions.insert(partitions.begin(), padding);
}
// Check for intersections/paddings between partitions
for (size_t i = 1; i < partitions.size(); i++) {
UINT32 previousPartitionEnd = partitions[i - 1].ptEntry.Offset + partitions[i - 1].ptEntry.Size;
// Check that current region is fully present in the image
if ((UINT32)partitions[i].ptEntry.Offset + (UINT32)partitions[i].ptEntry.Size > (UINT32)region.size()) {
if ((UINT32)partitions[i].ptEntry.Offset >= (UINT32)region.size()) {
msg(usprintf("%s: FPT partition is located outside of the opened image, skipped", __FUNCTION__), partitions[i].index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
else {
msg(usprintf("%s: FPT partition can't fit into the region, truncated", __FUNCTION__), partitions[i].index);
partitions[i].ptEntry.Size = (UINT32)region.size() - (UINT32)partitions[i].ptEntry.Offset;
}
}
// Check for intersection with previous partition
if (partitions[i].ptEntry.Offset < previousPartitionEnd) {
// Check if current partition is located inside previous one
if (partitions[i].ptEntry.Offset + partitions[i].ptEntry.Size <= previousPartitionEnd) {
msg(usprintf("%s: FPT partition is located inside another FPT partition, skipped", __FUNCTION__),
partitions[i].index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
else {
msg(usprintf("%s: FPT partition intersects with previous one, skipped", __FUNCTION__),
partitions[i].index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
}
// Check for padding between current and previous partitions
else if (partitions[i].ptEntry.Offset > previousPartitionEnd) {
padding.ptEntry.Offset = previousPartitionEnd;
padding.ptEntry.Size = partitions[i].ptEntry.Offset - previousPartitionEnd;
padding.type = Types::Padding;
std::vector<FPT_PARTITION_INFO>::iterator iter = partitions.begin();
std::advance(iter, i);
partitions.insert(iter, padding);
}
}
// Check for padding after the last region
if ((UINT32)partitions.back().ptEntry.Offset + (UINT32)partitions.back().ptEntry.Size < (UINT32)region.size()) {
padding.ptEntry.Offset = partitions.back().ptEntry.Offset + partitions.back().ptEntry.Size;
padding.ptEntry.Size = (UINT32)(region.size() - padding.ptEntry.Offset);
padding.type = Types::Padding;
partitions.push_back(padding);
}
// Partition map is consistent
for (size_t i = 0; i < partitions.size(); i++) {
UByteArray partition = region.mid(partitions[i].ptEntry.Offset, partitions[i].ptEntry.Size);
if (partitions[i].type == Types::FptPartition) {
UModelIndex partitionIndex;
// Get info
name = visibleAsciiOrHex((UINT8*) partitions[i].ptEntry.Name, 4);
info = usprintf("Full size: %Xh (%u)\nPartition type: %02Xh\n",
(UINT32)partition.size(), (UINT32)partition.size(),
partitions[i].ptEntry.Type);
// Add tree item
UINT8 type = Subtypes::CodeFptPartition + partitions[i].ptEntry.Type;
partitionIndex = model->addItem(partitions[i].ptEntry.Offset, Types::FptPartition, type, name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent);
if (type == Subtypes::CodeFptPartition && partition.size() >= (int) sizeof(UINT32) && readUnaligned((const UINT32*)partition.constData()) == CPD_SIGNATURE) {
// Parse code partition contents
UModelIndex cpdIndex;
ffsParser->parseCpdRegion(partition, partitions[i].ptEntry.Offset, partitionIndex, cpdIndex);
}
}
else if (partitions[i].type == Types::Padding) {
// Get info
name = UString("Padding");
info = usprintf("Full size: %Xh (%u)", (UINT32)partition.size(), (UINT32)partition.size());
// Add tree item
model->addItem(partitions[i].ptEntry.Offset, Types::Padding, getPaddingType(partition), name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent);
}
}
return U_SUCCESS;
}
USTATUS MeParser::parseIfwi16Region(const UByteArray & region, const UModelIndex & parent, UModelIndex & index)
{
// Check region size again
if ((UINT32)region.size() < sizeof(IFWI_16_LAYOUT_HEADER)) {
msg(usprintf("%s: ME region too small to fit IFWI 1.6 layout header", __FUNCTION__), parent);
return U_INVALID_ME_PARTITION_TABLE;
}
const IFWI_16_LAYOUT_HEADER* ifwiHeader = (const IFWI_16_LAYOUT_HEADER*)region.constData();
// Add header
UINT32 ptSize = sizeof(IFWI_16_LAYOUT_HEADER);
UByteArray header = region.left(ptSize);
UString name = UString("IFWI 1.6 header");
UString info = usprintf("Full size: %Xh (%u)\n"
"Data partition offset: %Xh\nData partition size: %Xh\n"
"Boot1 partition offset: %Xh\nBoot1 partition size: %Xh\n"
"Boot2 partition offset: %Xh\nBoot2 partition size: %Xh\n"
"Boot3 partition offset: %Xh\nBoot3 partition size: %Xh\n"
"Boot4 partition offset: %Xh\nBoot4 partition size: %Xh\n"
"Boot5 partition offset: %Xh\nBoot5 partition size: %Xh\n"
"Checksum: %" PRIX64 "h",
(UINT32)header.size(), (UINT32)header.size(),
ifwiHeader->DataPartition.Offset, ifwiHeader->DataPartition.Size,
ifwiHeader->BootPartition[0].Offset, ifwiHeader->BootPartition[0].Size,
ifwiHeader->BootPartition[1].Offset, ifwiHeader->BootPartition[1].Size,
ifwiHeader->BootPartition[2].Offset, ifwiHeader->BootPartition[2].Size,
ifwiHeader->BootPartition[3].Offset, ifwiHeader->BootPartition[3].Size,
ifwiHeader->BootPartition[4].Offset, ifwiHeader->BootPartition[4].Size,
ifwiHeader->Checksum);
// Add tree item
index = model->addItem(0, Types::IfwiHeader, 0, name, UString(), info, UByteArray(), header, UByteArray(), Fixed, parent);
std::vector<IFWI_PARTITION_INFO> partitions;
// Add data partition
{
IFWI_PARTITION_INFO partition = {};
partition.type = Types::IfwiPartition;
partition.subtype = Subtypes::DataIfwiPartition;
partition.ptEntry = ifwiHeader->DataPartition;
partitions.push_back(partition);
}
// Add boot partitions
for (UINT8 i = 0 ; i < 5; i++) {
if (ifwiHeader->BootPartition[i].Offset != 0 && ifwiHeader->BootPartition[i].Offset != 0xFFFFFFFF) {
IFWI_PARTITION_INFO partition = {};
partition.type = Types::IfwiPartition;
partition.subtype = Subtypes::BootIfwiPartition;
partition.ptEntry = ifwiHeader->BootPartition[i];
partitions.push_back(partition);
}
}
make_partition_table_consistent:
if (partitions.empty()) {
return U_INVALID_ME_PARTITION_TABLE;
}
// Sort partitions by offset
std::sort(partitions.begin(), partitions.end());
// Check for intersections and paddings between partitions
IFWI_PARTITION_INFO padding = {};
// Check intersection with the partition table header
if (partitions.front().ptEntry.Offset < ptSize) {
msg(usprintf("%s: IFWI partition has intersection with IFWI layout header, skipped", __FUNCTION__), index);
partitions.erase(partitions.begin());
goto make_partition_table_consistent;
}
// Check for padding between partition table and the first partition
else if (partitions.front().ptEntry.Offset > ptSize) {
padding.ptEntry.Offset = ptSize;
padding.ptEntry.Size = partitions.front().ptEntry.Offset - ptSize;
padding.type = Types::Padding;
partitions.insert(partitions.begin(), padding);
}
// Check for intersections/paddings between partitions
for (size_t i = 1; i < partitions.size(); i++) {
UINT32 previousPartitionEnd = partitions[i - 1].ptEntry.Offset + partitions[i - 1].ptEntry.Size;
// Check that current region is fully present in the image
if ((UINT32)partitions[i].ptEntry.Offset + (UINT32)partitions[i].ptEntry.Size > (UINT32)region.size()) {
if ((UINT32)partitions[i].ptEntry.Offset >= (UINT32)region.size()) {
msg(usprintf("%s: IFWI partition is located outside of the opened image, skipped", __FUNCTION__), index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
else {
msg(usprintf("%s: IFWI partition can't fit into the region, truncated", __FUNCTION__), index);
partitions[i].ptEntry.Size = (UINT32)region.size() - (UINT32)partitions[i].ptEntry.Offset;
}
}
// Check for intersection with previous partition
if (partitions[i].ptEntry.Offset < previousPartitionEnd) {
// Check if current partition is located inside previous one
if (partitions[i].ptEntry.Offset + partitions[i].ptEntry.Size <= previousPartitionEnd) {
msg(usprintf("%s: IFWI partition is located inside another IFWI partition, skipped", __FUNCTION__), index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
else {
msg(usprintf("%s: IFWI partition intersects with previous one, skipped", __FUNCTION__), index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
}
// Check for padding between current and previous partitions
else if (partitions[i].ptEntry.Offset > previousPartitionEnd) {
padding.ptEntry.Offset = previousPartitionEnd;
padding.ptEntry.Size = partitions[i].ptEntry.Offset - previousPartitionEnd;
padding.type = Types::Padding;
std::vector<IFWI_PARTITION_INFO>::iterator iter = partitions.begin();
std::advance(iter, i);
partitions.insert(iter, padding);
}
}
// Check for padding after the last region
if ((UINT32)partitions.back().ptEntry.Offset + (UINT32)partitions.back().ptEntry.Size < (UINT32)region.size()) {
padding.ptEntry.Offset = partitions.back().ptEntry.Offset + partitions.back().ptEntry.Size;
padding.ptEntry.Size = (UINT32)(region.size() - padding.ptEntry.Offset);
padding.type = Types::Padding;
partitions.push_back(padding);
}
// Partition map is consistent
for (size_t i = 0; i < partitions.size(); i++) {
UByteArray partition = region.mid(partitions[i].ptEntry.Offset, partitions[i].ptEntry.Size);
if (partitions[i].type == Types::IfwiPartition) {
UModelIndex partitionIndex;
if (partitions[i].subtype == Subtypes::DataIfwiPartition) {
name = "Data partition";
}
else if (partitions[i].subtype == Subtypes::BootIfwiPartition) {
name = "Boot partition";
}
// Get info
info = usprintf("Full size: %Xh (%u)\n", (UINT32)partition.size(), (UINT32)partition.size());
// Add tree item
partitionIndex = model->addItem(partitions[i].ptEntry.Offset, partitions[i].type, partitions[i].subtype, name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent);
// Parse partition further
if (partitions[i].subtype == Subtypes::DataIfwiPartition) {
UModelIndex dataPartitionFptRegionIndex;
parseFptRegion(partition, partitionIndex, dataPartitionFptRegionIndex);
}
else if (partitions[i].subtype == Subtypes::BootIfwiPartition) {
// Parse code partition contents
UModelIndex bootPartitionBpdtRegionIndex;
ffsParser->parseBpdtRegion(partition, 0, 0, partitionIndex, bootPartitionBpdtRegionIndex);
}
}
else if (partitions[i].type == Types::Padding) {
// Get info
name = UString("Padding");
info = usprintf("Full size: %Xh (%u)", (UINT32)partition.size(), (UINT32)partition.size());
// Add tree item
model->addItem(partitions[i].ptEntry.Offset, Types::Padding, getPaddingType(partition), name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent);
}
}
return U_SUCCESS;
}
USTATUS MeParser::parseIfwi17Region(const UByteArray & region, const UModelIndex & parent, UModelIndex & index)
{
// Check region size again
if ((UINT32)region.size() < sizeof(IFWI_17_LAYOUT_HEADER)) {
msg(usprintf("%s: ME region too small to fit IFWI 1.7 layout header", __FUNCTION__), parent);
return U_INVALID_ME_PARTITION_TABLE;
}
const IFWI_17_LAYOUT_HEADER* ifwiHeader = (const IFWI_17_LAYOUT_HEADER*)region.constData();
// TODO: add check for HeaderSize to be 0x40
// Add header
UINT32 ptSize = sizeof(IFWI_17_LAYOUT_HEADER);
UByteArray header = region.left(ptSize);
UString name = UString("IFWI 1.7 header");
UString info = usprintf("Full size: %Xh (%u)\n"
"Flags: %02Xh\n"
"Reserved: %02Xh\n"
"Checksum: %Xh\n"
"Data partition offset: %Xh\nData partition size: %Xh\n"
"Boot1 partition offset: %Xh\nBoot1 partition size: %Xh\n"
"Boot2 partition offset: %Xh\nBoot2 partition size: %Xh\n"
"Boot3 partition offset: %Xh\nBoot3 partition size: %Xh\n"
"Boot4 partition offset: %Xh\nBoot4 partition size: %Xh\n"
"Boot5 partition offset: %Xh\nBoot5 partition size: %Xh\n"
"Temp page offset: %Xh\nTemp page size: %Xh\n",
(UINT32)header.size(), (UINT32)header.size(),
ifwiHeader->Flags,
ifwiHeader->Reserved,
ifwiHeader->Checksum,
ifwiHeader->DataPartition.Offset, ifwiHeader->DataPartition.Size,
ifwiHeader->BootPartition[0].Offset, ifwiHeader->BootPartition[0].Size,
ifwiHeader->BootPartition[1].Offset, ifwiHeader->BootPartition[1].Size,
ifwiHeader->BootPartition[2].Offset, ifwiHeader->BootPartition[2].Size,
ifwiHeader->BootPartition[3].Offset, ifwiHeader->BootPartition[3].Size,
ifwiHeader->BootPartition[4].Offset, ifwiHeader->BootPartition[4].Size,
ifwiHeader->TempPage.Offset, ifwiHeader->TempPage.Size);
// Add tree item
index = model->addItem(0, Types::IfwiHeader, 0, name, UString(), info, UByteArray(), header, UByteArray(), Fixed, parent);
std::vector<IFWI_PARTITION_INFO> partitions;
// Add data partition
{
IFWI_PARTITION_INFO partition = {};
partition.type = Types::IfwiPartition;
partition.subtype = Subtypes::DataIfwiPartition;
partition.ptEntry = ifwiHeader->DataPartition;
partitions.push_back(partition);
}
// Add boot partitions
for (UINT8 i = 0 ; i < 5; i++) {
if (ifwiHeader->BootPartition[i].Offset != 0 && ifwiHeader->BootPartition[i].Offset != 0xFFFFFFFF) {
IFWI_PARTITION_INFO partition = {};
partition.type = Types::IfwiPartition;
partition.subtype = Subtypes::BootIfwiPartition;
partition.ptEntry = ifwiHeader->BootPartition[i];
partitions.push_back(partition);
}
}
// Add temp page
if (ifwiHeader->TempPage.Offset != 0 && ifwiHeader->TempPage.Offset != 0xFFFFFFFF) {
IFWI_PARTITION_INFO partition = {};
partition.type = Types::IfwiPartition;
partition.subtype = Subtypes::DataPadding;
partition.ptEntry = ifwiHeader->TempPage;
partitions.push_back(partition);
}
make_partition_table_consistent:
if (partitions.empty()) {
return U_INVALID_ME_PARTITION_TABLE;
}
// Sort partitions by offset
std::sort(partitions.begin(), partitions.end());
// Check for intersections and paddings between partitions
IFWI_PARTITION_INFO padding = {};
// Check intersection with the partition table header
if (partitions.front().ptEntry.Offset < ptSize) {
msg(usprintf("%s: IFWI partition has intersection with IFWI layout header, skipped", __FUNCTION__), index);
partitions.erase(partitions.begin());
goto make_partition_table_consistent;
}
// Check for padding between partition table and the first partition
else if (partitions.front().ptEntry.Offset > ptSize) {
padding.ptEntry.Offset = ptSize;
padding.ptEntry.Size = partitions.front().ptEntry.Offset - ptSize;
padding.type = Types::Padding;
partitions.insert(partitions.begin(), padding);
}
// Check for intersections/paddings between partitions
for (size_t i = 1; i < partitions.size(); i++) {
UINT32 previousPartitionEnd = partitions[i - 1].ptEntry.Offset + partitions[i - 1].ptEntry.Size;
// Check that current region is fully present in the image
if ((UINT32)partitions[i].ptEntry.Offset + (UINT32)partitions[i].ptEntry.Size > (UINT32)region.size()) {
if ((UINT32)partitions[i].ptEntry.Offset >= (UINT32)region.size()) {
msg(usprintf("%s: IFWI partition is located outside of the opened image, skipped", __FUNCTION__), index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
else {
msg(usprintf("%s: IFWI partition can't fit into the region, truncated", __FUNCTION__), index);
partitions[i].ptEntry.Size = (UINT32)region.size() - (UINT32)partitions[i].ptEntry.Offset;
}
}
// Check for intersection with previous partition
if (partitions[i].ptEntry.Offset < previousPartitionEnd) {
// Check if current partition is located inside previous one
if (partitions[i].ptEntry.Offset + partitions[i].ptEntry.Size <= previousPartitionEnd) {
msg(usprintf("%s: IFWI partition is located inside another IFWI partition, skipped", __FUNCTION__), index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
else {
msg(usprintf("%s: IFWI partition intersects with previous one, skipped", __FUNCTION__), index);
partitions.erase(partitions.begin() + i);
goto make_partition_table_consistent;
}
}
// Check for padding between current and previous partitions
else if (partitions[i].ptEntry.Offset > previousPartitionEnd) {
padding.ptEntry.Offset = previousPartitionEnd;
padding.ptEntry.Size = partitions[i].ptEntry.Offset - previousPartitionEnd;
padding.type = Types::Padding;
std::vector<IFWI_PARTITION_INFO>::iterator iter = partitions.begin();
std::advance(iter, i);
partitions.insert(iter, padding);
}
}
// Check for padding after the last region
if ((UINT32)partitions.back().ptEntry.Offset + (UINT32)partitions.back().ptEntry.Size < (UINT32)region.size()) {
padding.ptEntry.Offset = partitions.back().ptEntry.Offset + partitions.back().ptEntry.Size;
padding.ptEntry.Size = (UINT32)(region.size() - padding.ptEntry.Offset);
padding.type = Types::Padding;
partitions.push_back(padding);
}
// Partition map is consistent
for (size_t i = 0; i < partitions.size(); i++) {
UByteArray partition = region.mid(partitions[i].ptEntry.Offset, partitions[i].ptEntry.Size);
if (partitions[i].type == Types::IfwiPartition) {
UModelIndex partitionIndex;
if (partitions[i].subtype == Subtypes::DataIfwiPartition) {
name = "Data partition";
}
else if (partitions[i].subtype == Subtypes::BootIfwiPartition){
name = "Boot partition";
}
else {
name = "Temp page";
}
// Get info
info = usprintf("Full size: %Xh (%u)\n", (UINT32)partition.size(), (UINT32)partition.size());
// Add tree item
partitionIndex = model->addItem(partitions[i].ptEntry.Offset, partitions[i].type, partitions[i].subtype, name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent);
// Parse partition further
if (partitions[i].subtype == Subtypes::DataIfwiPartition) {
UModelIndex dataPartitionFptRegionIndex;
parseFptRegion(partition, partitionIndex, dataPartitionFptRegionIndex);
}
else if (partitions[i].subtype == Subtypes::BootIfwiPartition) {
// Parse code partition contents
UModelIndex bootPartitionRegionIndex;
if (*(UINT32*)partition.constData() == FPT_HEADER_SIGNATURE) {
// Parse as FptRegion
parseFptRegion(partition, partitionIndex, bootPartitionRegionIndex);
}
else {
// Parse as BpdtRegion
ffsParser->parseBpdtRegion(partition, 0, 0, partitionIndex, bootPartitionRegionIndex);
}
}
}
else if (partitions[i].type == Types::Padding) {
// Get info
name = UString("Padding");
info = usprintf("Full size: %Xh (%u)", (UINT32)partition.size(), (UINT32)partition.size());
// Add tree item
model->addItem(partitions[i].ptEntry.Offset, Types::Padding, getPaddingType(partition), name, UString(), info, UByteArray(), partition, UByteArray(), Fixed, parent);
}
}
return U_SUCCESS;
}
#endif // U_ENABLE_ME_PARSING_SUPPORT
|