1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
/* utility.cpp
Copyright (c) 2016, Nikolaj Schlej. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*/
#include <cstdio>
#include <cctype>
#include <cstring>
#include "treemodel.h"
#include "utility.h"
#include "ffs.h"
#include "Tiano/EfiTianoCompress.h"
#include "Tiano/EfiTianoDecompress.h"
#include "LZMA/LzmaCompress.h"
#include "LZMA/LzmaDecompress.h"
// Returns bytes as string when all bytes are ascii visible, hex representation otherwise
UString visibleAsciiOrHex(UINT8* bytes, UINT32 length)
{
bool ascii = true;
UString asciiString;
UString hexString;
for (UINT32 i = 0; i < length; i++) {
hexString += usprintf("%02X", bytes[i]);
if (ascii && i > 0 && bytes[i] == '\x00') { // Check for the rest of the buffer being zeroes, and make the whole previous string visible, if so
for (UINT32 j = i + 1; j < length; j++) {
if (bytes[j] != '\x00') {
ascii = false;
break;
}
}
if (ascii) {
// No need to continue iterating over every symbol, we did it already
break;
}
}
else if (bytes[i] < '\x20' || bytes[i] > '\x7E') { // Explicit ascii codes to avoid locale dependency
ascii = false;
}
if (ascii) {
asciiString += usprintf("%c", bytes[i]);
}
}
if (ascii) {
return asciiString;
}
return hexString;
}
// Returns unique name string based for tree item
UString uniqueItemName(const UModelIndex & index)
{
// Sanity check
if (!index.isValid())
return UString("InvalidIndex");
// Get model from index
const TreeModel* model = (const TreeModel*)index.model();
// Construct the name
UString itemName = model->name(index);
UString itemText = model->text(index);
// Default name
UString name = itemName;
switch (model->type(index)) {
case Types::NvarEntry:
case Types::VssEntry:
case Types::SysFEntry:
case Types::EvsaEntry:
case Types::PhoenixFlashMapEntry:
case Types::InsydeFlashDeviceMapEntry:
case Types::File:
name = itemText.isEmpty() ? itemName : itemName + '_' + itemText;
break;
case Types::Section: {
// Get parent file name
UModelIndex fileIndex = model->findParentOfType(index, Types::File);
UString fileText = model->text(fileIndex);
name = fileText.isEmpty() ? model->name(fileIndex) : model->name(fileIndex) + '_' + fileText;
// Special case of GUIDed sections
if (model->subtype(index) == EFI_SECTION_GUID_DEFINED || model->subtype(index) == EFI_SECTION_FREEFORM_SUBTYPE_GUID) {
name = model->name(index) +'_' + name;
}
} break;
}
// Populate subtypeString
UString subtypeString = itemSubtypeToUString(model->type(index), model->subtype(index));
// Create final name
name = itemTypeToUString(model->type(index))
+ (subtypeString.length() ? ('_' + subtypeString) : UString())
+ '_' + name;
fixFileName(name, true);
return name;
}
// Makes the name usable as a file name
void fixFileName(UString &name, bool replaceSpaces)
{
// Replace some symbols with underscores for compatibility
const char table[] = {
'/', // Banned in *nix and Windows
'<', '>', ':', '\"', '\\', '|', '?', '*', // Banned in Windows
};
int nameLength = (int)name.length(); // Note: Qt uses int for whatever reason.
for (int i = 0; i < nameLength; i++) {
if (
name[i] < (char)0x20 || // ASCII control characters, banned in Windows, hard to work with in *nix
name[i] > (char)0x7f || // high ASCII characters
(replaceSpaces && name[i] == ' ') // Provides better readability
) {
name[i] = '_';
continue;
}
for (size_t j = 0; j < sizeof(table); j++) {
if (name[i] == table[j]) {
name[i] = '_';
break;
}
}
}
if (!nameLength) {
name = "_";
}
}
// Returns text representation of error code
UString errorCodeToUString(USTATUS errorCode)
{
// TODO: improve
switch (errorCode) {
case U_SUCCESS: return UString("Success");
case U_NOT_IMPLEMENTED: return UString("Not implemented");
case U_INVALID_PARAMETER: return UString("Function called with invalid parameter");
case U_BUFFER_TOO_SMALL: return UString("Buffer too small");
case U_OUT_OF_RESOURCES: return UString("Out of resources");
case U_OUT_OF_MEMORY: return UString("Out of memory");
case U_FILE_OPEN: return UString("File can't be opened");
case U_FILE_READ: return UString("File can't be read");
case U_FILE_WRITE: return UString("File can't be written");
case U_ITEM_NOT_FOUND: return UString("Item not found");
case U_UNKNOWN_ITEM_TYPE: return UString("Unknown item type");
case U_INVALID_FLASH_DESCRIPTOR: return UString("Invalid flash descriptor");
case U_INVALID_REGION: return UString("Invalid region");
case U_EMPTY_REGION: return UString("Empty region");
case U_BIOS_REGION_NOT_FOUND: return UString("BIOS region not found");
case U_VOLUMES_NOT_FOUND: return UString("UEFI volumes not found");
case U_INVALID_VOLUME: return UString("Invalid UEFI volume");
case U_VOLUME_REVISION_NOT_SUPPORTED: return UString("Volume revision not supported");
case U_UNKNOWN_FFS: return UString("Unknown file system");
case U_INVALID_FILE: return UString("Invalid file");
case U_INVALID_SECTION: return UString("Invalid section");
case U_UNKNOWN_SECTION: return UString("Unknown section");
case U_STANDARD_COMPRESSION_FAILED: return UString("Standard compression failed");
case U_CUSTOMIZED_COMPRESSION_FAILED: return UString("Customized compression failed");
case U_STANDARD_DECOMPRESSION_FAILED: return UString("Standard decompression failed");
case U_CUSTOMIZED_DECOMPRESSION_FAILED: return UString("Customized decompression failed");
case U_UNKNOWN_COMPRESSION_TYPE: return UString("Unknown compression type");
case U_UNKNOWN_EXTRACT_MODE: return UString("Unknown extract mode");
case U_UNKNOWN_REPLACE_MODE: return UString("Unknown replace mode");
case U_UNKNOWN_IMAGE_TYPE: return UString("Unknown executable image type");
case U_UNKNOWN_PE_OPTIONAL_HEADER_TYPE: return UString("Unknown PE optional header type");
case U_UNKNOWN_RELOCATION_TYPE: return UString("Unknown relocation type");
case U_COMPLEX_BLOCK_MAP: return UString("Block map structure too complex for correct analysis");
case U_DIR_ALREADY_EXIST: return UString("Directory already exists");
case U_DIR_CREATE: return UString("Directory can't be created");
case U_DIR_CHANGE: return UString("Change directory failed");
case U_DEPEX_PARSE_FAILED: return UString("Dependency expression parsing failed");
case U_TRUNCATED_IMAGE: return UString("Image is truncated");
case U_INVALID_CAPSULE: return UString("Invalid capsule");
case U_STORES_NOT_FOUND: return UString("Stores not found");
case U_INVALID_STORE_SIZE: return UString("Invalid store size");
case U_INVALID_STORE: return UString("Invalid store");
default: return usprintf("Unknown error %02lX", errorCode);
}
}
// Compression routines
USTATUS decompress(const UByteArray & compressedData, const UINT8 compressionType, UINT8 & algorithm, UINT32 & dictionarySize, UByteArray & decompressedData, UByteArray & efiDecompressedData)
{
const UINT8* data;
UINT32 dataSize;
UINT8* decompressed;
UINT8* efiDecompressed;
UINT32 decompressedSize = 0;
UINT8* scratch;
UINT32 scratchSize = 0;
const EFI_TIANO_HEADER* header;
// For all but LZMA dictionary size is 0
dictionarySize = 0;
switch (compressionType)
{
case EFI_NOT_COMPRESSED: {
decompressedData = compressedData;
algorithm = COMPRESSION_ALGORITHM_NONE;
return U_SUCCESS;
}
case EFI_STANDARD_COMPRESSION: {
// Set default algorithm to unknown
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
// Get buffer sizes
data = (UINT8*)compressedData.data();
dataSize = (UINT32)compressedData.size();
// Check header to be valid
header = (const EFI_TIANO_HEADER*)data;
if (header->CompSize + sizeof(EFI_TIANO_HEADER) != dataSize)
return U_STANDARD_DECOMPRESSION_FAILED;
// Get info function is the same for both algorithms
if (U_SUCCESS != EfiTianoGetInfo(data, dataSize, &decompressedSize, &scratchSize))
return U_STANDARD_DECOMPRESSION_FAILED;
// Allocate memory
decompressed = (UINT8*)malloc(decompressedSize);
efiDecompressed = (UINT8*)malloc(decompressedSize);
scratch = (UINT8*)malloc(scratchSize);
if (!decompressed || !efiDecompressed || !scratch) {
free(decompressed);
free(efiDecompressed);
free(scratch);
return U_STANDARD_DECOMPRESSION_FAILED;
}
// Decompress section data using both algorithms
USTATUS result = U_SUCCESS;
// Try Tiano
USTATUS TianoResult = TianoDecompress(data, dataSize, decompressed, decompressedSize, scratch, scratchSize);
// Try EFI 1.1
USTATUS EfiResult = EfiDecompress(data, dataSize, efiDecompressed, decompressedSize, scratch, scratchSize);
if (decompressedSize > INT32_MAX) {
result = U_STANDARD_DECOMPRESSION_FAILED;
}
else if (EfiResult == U_SUCCESS && TianoResult == U_SUCCESS) { // Both decompressions are OK
algorithm = COMPRESSION_ALGORITHM_UNDECIDED;
decompressedData = UByteArray((const char*)decompressed, (int)decompressedSize);
efiDecompressedData = UByteArray((const char*)efiDecompressed, (int)decompressedSize);
}
else if (TianoResult == U_SUCCESS) { // Only Tiano is OK
algorithm = COMPRESSION_ALGORITHM_TIANO;
decompressedData = UByteArray((const char*)decompressed, (int)decompressedSize);
}
else if (EfiResult == U_SUCCESS) { // Only EFI 1.1 is OK
algorithm = COMPRESSION_ALGORITHM_EFI11;
decompressedData = UByteArray((const char*)efiDecompressed, (int)decompressedSize);
}
else { // Both decompressions failed
result = U_STANDARD_DECOMPRESSION_FAILED;
}
free(decompressed);
free(efiDecompressed);
free(scratch);
return result;
}
case EFI_CUSTOMIZED_COMPRESSION: {
// Set default algorithm to unknown
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
// Get buffer sizes
data = (const UINT8*)compressedData.constData();
dataSize = (UINT32)compressedData.size();
// Get info as normal LZMA section
if (U_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize)) {
// Get info as Intel legacy LZMA section
data += sizeof(UINT32);
if (U_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize)) {
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
}
else {
algorithm = COMPRESSION_ALGORITHM_LZMA_INTEL_LEGACY;
}
}
else {
algorithm = COMPRESSION_ALGORITHM_LZMA;
}
// Allocate memory
decompressed = (UINT8*)malloc(decompressedSize);
if (!decompressed) {
return U_OUT_OF_MEMORY;
}
// Decompress section data
if (U_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
free(decompressed);
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
}
if (decompressedSize > INT32_MAX) {
free(decompressed);
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
}
dictionarySize = readUnaligned((UINT32*)(data + 1)); // LZMA dictionary size is stored in bytes 1-4 of LZMA properties header
decompressedData = UByteArray((const char*)decompressed, (int)decompressedSize);
free(decompressed);
return U_SUCCESS;
}
case EFI_CUSTOMIZED_COMPRESSION_LZMAF86: {
// Set default algorithm to unknown
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
// Get buffer sizes
data = (const UINT8*)compressedData.constData();
dataSize = (UINT32)compressedData.size();
// Get info as normal LZMA section
if (U_SUCCESS != LzmaGetInfo(data, dataSize, &decompressedSize)) {
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
}
algorithm = COMPRESSION_ALGORITHM_LZMAF86;
// Allocate memory
decompressed = (UINT8*)malloc(decompressedSize);
if (!decompressed) {
return U_OUT_OF_MEMORY;
}
// Decompress section data
if (U_SUCCESS != LzmaDecompress(data, dataSize, decompressed)) {
free(decompressed);
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
}
if (decompressedSize > INT32_MAX) {
free(decompressed);
return U_CUSTOMIZED_DECOMPRESSION_FAILED;
}
// TODO: need to correctly handle non-x86 architecture of the FW image
// After LZMA decompression, the data need to be converted to the raw data.
UINT32 state = 0;
z7_BranchConvSt_X86_Dec(decompressed, decompressedSize, 0, &state);
dictionarySize = readUnaligned((UINT32*)(data + 1)); // LZMA dictionary size is stored in bytes 1-4 of LZMA properties header
decompressedData = UByteArray((const char*)decompressed, (int)decompressedSize);
free(decompressed);
return U_SUCCESS;
}
default: {
algorithm = COMPRESSION_ALGORITHM_UNKNOWN;
return U_UNKNOWN_COMPRESSION_TYPE;
}
}
}
// 8bit sum calculation routine
UINT8 calculateSum8(const UINT8* buffer, UINT32 bufferSize)
{
if (!buffer)
return 0;
UINT8 counter = 0;
while (bufferSize--)
counter += buffer[bufferSize];
return counter;
}
// 8bit checksum calculation routine
UINT8 calculateChecksum8(const UINT8* buffer, UINT32 bufferSize)
{
if (!buffer)
return 0;
return (UINT8)(0x100U - calculateSum8(buffer, bufferSize));
}
// 16bit checksum calculation routine
UINT16 calculateChecksum16(const UINT16* buffer, UINT32 bufferSize)
{
if (!buffer)
return 0;
UINT16 counter = 0;
UINT32 index = 0;
bufferSize /= sizeof(UINT16);
for (; index < bufferSize; index++) {
counter = (UINT16)(counter + buffer[index]);
}
return (UINT16)(0x10000 - counter);
}
// 32bit checksum calculation routine
UINT32 calculateChecksum32(const UINT32* buffer, UINT32 bufferSize)
{
if (!buffer)
return 0;
UINT32 counter = 0;
UINT32 index = 0;
bufferSize /= sizeof(UINT32);
for (; index < bufferSize; index++) {
counter = (UINT32)(counter + buffer[index]);
}
return (UINT32)(0x100000000ULL - counter);
}
// Returns 0x00..0xFF if an array is filled by a single repeated value, and 0xFFFFFFFF if not
UINT32 uniformByte(const UByteArray& a, const UINT32 rcIfEmpty)
{
if (a.isEmpty())
return rcIfEmpty;
size_t s = a.size();
if ((s == 1) || (s > 1 && memcmp(a.constData(), a.constData() + 1, s - 1) == 0))
return (UINT8)a.at(0);
return UINT32_MAX;
}
// Returns true if an array is filled by a specified single repeated value or an array is empty
UINT32 isUniformByte(const UByteArray& a, const UINT8 value)
{
return uniformByte(a, value) == value;
}
// Get padding type for a given padding
UINT8 getPaddingType(const UByteArray & padding)
{
switch (uniformByte(padding)) {
case 0:
return Subtypes::ZeroPadding;
case 0xFF:
return Subtypes::OnePadding;
}
return Subtypes::DataPadding;
}
static inline int char2hex(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
if (c == '.')
return -2;
return -1;
}
INTN findPattern(const UINT8 *pattern, const UINT8 *patternMask, UINTN patternSize,
const UINT8 *data, UINTN dataSize, UINTN dataOff)
{
if (patternSize == 0 || dataSize == 0 || dataOff >= dataSize || dataSize - dataOff < patternSize)
return -1;
while (dataOff + patternSize <= dataSize) {
bool matches = true;
for (UINTN i = 0; i < patternSize; i++) {
if ((data[dataOff + i] & patternMask[i]) != pattern[i]) {
matches = false;
break;
}
}
if (matches)
return static_cast<INTN>(dataOff);
dataOff++;
}
return -1;
}
bool makePattern(const CHAR8 *textPattern, std::vector<UINT8> &pattern, std::vector<UINT8> &patternMask)
{
UINTN len = std::strlen(textPattern);
if (len == 0 || len % 2 != 0)
return false;
len /= 2;
pattern.resize(len);
patternMask.resize(len);
for (UINTN i = 0; i < len; i++) {
int v1 = char2hex(std::toupper(textPattern[i * 2]));
int v2 = char2hex(std::toupper(textPattern[i * 2 + 1]));
if (v1 == -1 || v2 == -1)
return false;
if (v1 != -2) {
patternMask[i] = 0xF0;
pattern[i] = static_cast<UINT8>(v1) << 4;
}
if (v2 != -2) {
patternMask[i] |= 0x0F;
pattern[i] |= static_cast<UINT8>(v2);
}
}
return true;
}
USTATUS gzipDecompress(const UByteArray & input, UByteArray & output)
{
output.clear();
if (input.size() == 0)
return U_SUCCESS;
z_stream stream = {};
stream.next_in = (z_const Bytef *)input.data();
stream.avail_in = (uInt)input.size();
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
// 15 for the maximum history buffer, 16 for gzip only input
int ret = inflateInit2(&stream, 15U | 16U);
if (ret != Z_OK)
return U_GZIP_DECOMPRESSION_FAILED;
while (ret == Z_OK) {
Bytef out[0x1000] = {};
stream.next_out = out;
stream.avail_out = sizeof(out);
ret = inflate(&stream, Z_NO_FLUSH);
if ((ret == Z_OK || ret == Z_STREAM_END) && stream.avail_out != sizeof(out))
output += UByteArray((char *)out, sizeof(out) - stream.avail_out);
}
inflateEnd(&stream);
return ret == Z_STREAM_END ? U_SUCCESS : U_GZIP_DECOMPRESSION_FAILED;
}
USTATUS zlibDecompress(const UByteArray& input, UByteArray& output)
{
output.clear();
if (input.size() == 0)
return U_SUCCESS;
z_stream stream = {};
stream.next_in = (z_const Bytef*)input.data();
stream.avail_in = (uInt)input.size();
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
// 15 for the maximum history buffer
int ret = inflateInit2(&stream, 15U);
if (ret != Z_OK)
return U_ZLIB_DECOMPRESSION_FAILED;
while (ret == Z_OK) {
Bytef out[0x1000] = {};
stream.next_out = out;
stream.avail_out = sizeof(out);
ret = inflate(&stream, Z_NO_FLUSH);
if ((ret == Z_OK || ret == Z_STREAM_END) && stream.avail_out != sizeof(out))
output += UByteArray((char*)out, sizeof(out) - stream.avail_out);
}
inflateEnd(&stream);
return ret == Z_STREAM_END ? U_SUCCESS : U_ZLIB_DECOMPRESSION_FAILED;
}
USTATUS brotliDecompress(const UByteArray& input, UByteArray& output)
{
output.clear();
if (input.size() == 0)
return U_SUCCESS;
const uint8_t *next_in = (const uint8_t*)input.data();
size_t avail_in = input.size();
BrotliDecoderStateStruct *decoder = BrotliDecoderCreateInstance(nullptr, nullptr, nullptr);
if (decoder == nullptr)
return U_BROTLI_DECOMPRESSION_FAILED;
BrotliDecoderResult ret = BROTLI_DECODER_RESULT_NEEDS_MORE_OUTPUT;
BROTLI_BOOL ret_param = BrotliDecoderSetParameter(decoder, BROTLI_DECODER_PARAM_LARGE_WINDOW, 1);
if (ret_param != BROTLI_FALSE) {
while (ret == BROTLI_DECODER_RESULT_NEEDS_MORE_OUTPUT) {
uint8_t out[0x1000] = {};
uint8_t *next_out = out;
size_t avail_out = sizeof(out);
ret = BrotliDecoderDecompressStream(decoder, &avail_in, &next_in, &avail_out, &next_out, NULL);
if ((ret == BROTLI_DECODER_RESULT_NEEDS_MORE_OUTPUT || ret == BROTLI_DECODER_RESULT_SUCCESS) && avail_out != sizeof(out))
output += UByteArray((char*)out, sizeof(out) - avail_out);
}
}
BrotliDecoderDestroyInstance(decoder);
return ret == BROTLI_DECODER_RESULT_SUCCESS ? U_SUCCESS : U_BROTLI_DECOMPRESSION_FAILED;
}
UString fourCC(const UINT32 value)
{
const UINT8 byte0 = (const UINT8)(value & 0xFF);
const UINT8 byte1 = (const UINT8)((value & 0xFF00) >> 8);
const UINT8 byte2 = (const UINT8)((value & 0xFF0000) >> 16);
const UINT8 byte3 = (const UINT8)((value & 0xFF000000) >> 24);
return usprintf("%c%c%c%c", byte0, byte1, byte2, byte3);
}
/*
* Creates the OSI Fletcher checksum. See 8473-1, Appendix C, section C.3.
* The checksum field of the passed PDU does not need to be reset to zero.
*
* The "Fletcher Checksum" was proposed in a paper by John G. Fletcher of
* Lawrence Livermore Labs. The Fletcher Checksum was proposed as an
* alternative to cyclical redundancy checks because it provides error-
* detection properties similar to cyclical redundancy checks but at the
* cost of a simple summation technique. Its characteristics were first
* published in IEEE Transactions on Communications in January 1982. One
* version has been adopted by ISO for use in the class-4 transport layer
* of the network protocol.
*
*/
UINT32 fletcher32(const UByteArray& img)
{
UINT32 c0;
UINT32 c1;
UINT32 checksum;
INTN index;
const UINT16* pptr = (const UINT16*)img.constData();
INTN length = img.size() / 2;
c0 = 0xFFFF;
c1 = 0xFFFF;
while (length) {
index = length >= 359 ? 359 : length;
length -= index;
do {
c0 += *(pptr++);
c1 += c0;
} while (--index);
c0 = (c0 & 0xFFFF) + (c0 >> 16);
c1 = (c1 & 0xFFFF) + (c1 >> 16);
}
/* Sums[0,1] mod 64K + overflow */
c0 = (c0 & 0xFFFF) + (c0 >> 16);
c1 = (c1 & 0xFFFF) + (c1 >> 16);
checksum = (c1 << 16) | c0;
return checksum;
}
|