1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
import ufo.numpy
import numpy as np
import tifffile
import contextlib
from common import disable, tempdir
a, b = 1.5, 2.5
ones = np.ones((512, 512))
zeros = np.zeros((512, 512))
small = np.ones((256, 256))
random = np.random.random((512, 512))
def have_camera_plugin():
from gi.repository import Ufo
return 'camera' in Ufo.PluginManager().get_all_task_names()
@contextlib.contextmanager
def single_tiff_setup(n_images, fmt='foo-{:05}.tif'):
with tempdir() as d:
data = np.ones((512, 512), dtype=np.float32)
for i in range(n_images):
tifffile.imsave(d.path(fmt.format(i)), data)
yield d
def test_read_single_tiffs():
from ufo import Read, Null
with single_tiff_setup(32) as d:
read = Read(path=d.root)
null = Null()
null(read()).run().join()
assert(null.task.props.num_processed == 32)
def test_read_single_tiffs_stepped():
from ufo import Read, Null
with single_tiff_setup(32) as d:
read = Read(path=d.root, step=2)
null = Null()
null(read()).run().join()
assert(null.task.props.num_processed == 32 / 2)
def test_read_single_tiffs_start_modified():
from ufo import Read, Null
with single_tiff_setup(32) as d:
read = Read(path=d.root, start=15)
null = Null()
null(read()).run().join()
assert(null.task.props.num_processed == 32 - 15)
@disable
def test_read_multi_tiffs():
from ufo import Read, Null
with tempdir() as d:
n_images = 32
data = np.ones((512, 512, n_images))
tifffile.imsave(d.path('foo.tif'), data)
read = Read(path=d.path('foo.tif'))
null = Null()
null(read()).run().join()
assert(null.task.props.num_processed == n_images)
def test_average():
from ufo import Average
average = Average()
for x in average([a * ones, b * ones]):
expected = (a + b) / 2
assert(np.all(x == expected))
def test_buffer():
from ufo import DummyData, Buffer
data = DummyData(number=10, width=512, height=256)
buffr = Buffer()
result = list(buffr(data()))
assert(len(result) == 10)
for r in result:
assert(r.shape[0] == 256)
assert(r.shape[1] == 512)
def test_rescale():
from ufo import Rescale
rescale = Rescale(factor=0.5)
result = list(rescale([a * ones, b * small]))
assert(np.mean(result[0]) == a)
assert(np.mean(result[1]) == b)
@disable
def test_roi():
from ufo import CutRoi
x, y = 10, 20
w, h = 256, 128
roi = CutRoi(x=x, y=y, width=w, height=h)
result = list(roi([random, random]))
ref = random[y:y+h, x:x+w]
assert(ref.shape[0] == h)
assert(ref.shape[1] == w)
assert(np.all(ref == result[0]))
def test_stack():
from ufo import Stack
stack = Stack(number=2)
for x in stack([a * ones, b * ones]):
assert(x.shape[0] == 2)
assert(np.all(x[0,:,:] == a))
assert(np.all(x[1,:,:] == b))
def test_flatten():
from ufo import FlattenInplace
summing = FlattenInplace(mode="sum")
result = list(summing([a * ones, b * ones]).items())
assert(np.all(result[0] == a + b))
def test_fft_1d():
from ufo import Fft, Ifft
fft = Fft(dimensions=1)
ifft = Ifft(dimensions=1)
orig_a = a * ones
orig_b = b * random
result = list(ifft(fft([orig_a, orig_b])))
assert(np.sum(orig_a - result[0]) < 0.001)
assert(np.sum(orig_b - result[1]) < 0.01)
def test_fft_2d():
from ufo import Fft, Ifft
fft = Fft(dimensions=2)
ifft = Ifft(dimensions=2)
orig_a = a * ones
orig_b = b * random
result = list(ifft(fft([orig_a, orig_b])))
assert(np.sum(orig_a - result[0]) < 0.001)
assert(np.sum(orig_b - result[1]) < 0.1)
def test_flatfield_correction():
from ufo import FlatFieldCorrect
darks = np.ones((512, 512)) * 1.5
flats = np.ones((512, 512)) * 11.5
projs = np.ones((512, 512)) * 100.0
ffc = FlatFieldCorrect()
expected = (projs - darks) / (flats - darks)
result = list(ffc([projs, projs], [darks, darks], [flats, flats]))[0]
assert(np.sum(np.abs(expected - result)) < 1)
expected = - np.log((projs - darks) / (flats - darks))
ffc = FlatFieldCorrect(absorption_correct=True)
result = list(ffc([projs, projs], [darks, darks], [flats, flats]))[0]
assert(np.sum(np.abs(expected - result)) < 1)
def test_measure():
from ufo import Measure
measures = []
def measure_callback(m, a):
measures.append(ufo.numpy.asarray(a))
measure = Measure(metric='mean', axis=-1)
measure.connect('result', measure_callback)
measure([a * ones, b * ones]).run().join()
assert(len(measures) == 2)
def test_dummy_data():
from ufo import DummyData
data = DummyData(number=10, width=256, height=128)
result = list(data())
assert(len(result) == 10)
assert(all(r.shape[0] == 128 and r.shape[1] == 256 for r in result))
def test_metaballs():
from ufo import Metaballs
metaballs = Metaballs(number=5, number_balls=5, width=512, height=256)
result = list(metaballs())
assert(len(result) == 5)
assert(all(r.shape[0] == 256 and r.shape[1] == 512 for r in result))
def test_transpose():
from ufo import Transpose
transpose = Transpose()
ones = np.ones((256, 512))
zeros = np.zeros((256, 128))
result = list(transpose([ones, zeros]))
assert(np.all(result[0] == ones.transpose()))
assert(np.all(result[1] == zeros.transpose()))
def test_uca():
if have_camera_plugin():
from ufo import Camera
camera = Camera(name='mock', number=2)
result = list(camera())
assert(len(result) == 2)
def test_uca_direct():
try:
from gi.repository import Ufo, Uca
if have_camera_plugin():
from ufo import Camera
uca_pm = Uca.PluginManager()
mock = uca_pm.get_camerav('mock', [])
camera = Camera(camera=mock, count=3)
result = list(camera())
assert(len(result) == 3)
except ImportError:
pass
def test_memory_in():
with tempdir() as d:
from ufo import MemoryIn, Write
ref = random.astype(np.float32)
read = MemoryIn(pointer=ref.__array_interface__['data'][0], number=1,
width=ref.shape[1], height=ref.shape[0])
write = Write(filename=d.path('foo.tif'))
write(read()).run().join()
result = tifffile.imread(d.path('foo.tif'))
assert(np.all(ref == result))
def test_memory_out():
with tempdir() as d:
from ufo import MemoryOut, Read
ref = random.astype(np.float32)
out = np.zeros_like(ref).astype(np.float32)
tifffile.imsave(d.path('foo.tif'), ref)
read = Read(path=d.path('foo.tif'))
write = MemoryOut(pointer=out.__array_interface__['data'][0], max_size=ref.nbytes)
write(read()).run().join()
assert(np.all(out == ref))
|