File: dcraw_indi.c

package info (click to toggle)
ufraw 0.20-2%2Bdeb8u1
  • links: PTS
  • area: main
  • in suites: jessie
  • size: 4,704 kB
  • ctags: 2,177
  • sloc: ansic: 27,165; cpp: 13,668; sh: 4,365; makefile: 226; xml: 202
file content (1167 lines) | stat: -rw-r--r-- 52,146 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
/*
 * UFRaw - Unidentified Flying Raw converter for digital camera images
 *
 * dcraw_indi.c - DCRaw functions made independent
 * Copyright 2004-2014 by Udi Fuchs
 *
 * based on dcraw by Dave Coffin
 * http://www.cybercom.net/~dcoffin/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <glib.h>
#include <glib/gi18n.h> /*For _(String) definition - NKBJ*/
#include "dcraw_api.h"
#include "uf_progress.h"

#ifdef _OPENMP
#include <omp.h>
#define uf_omp_get_thread_num() omp_get_thread_num()
#define uf_omp_get_num_threads() omp_get_num_threads()
#else
#define uf_omp_get_thread_num() 0
#define uf_omp_get_num_threads() 1
#endif

#if !defined(ushort)
#define ushort unsigned short
#endif

extern const double xyz_rgb[3][3];
extern const float d65_white[3];

#define CLASS

#define FORC(cnt) for (c=0; c < cnt; c++)
#define FORC3 FORC(3)
#define FORC4 FORC(4)
#define FORCC FORC(colors)

#define SQR(x) ((x)*(x))
#define LIM(x,min,max) MAX(min,MIN(x,max))
#define ULIM(x,y,z) ((y) < (z) ? LIM(x,y,z) : LIM(x,z,y))
#define CLIP(x) LIM(x,0,65535)
#define SWAP(a,b) { a ^= b; a ^= (b ^= a); }

/*
   In order to inline this calculation, I make the risky
   assumption that all filter patterns can be described
   by a repeating pattern of eight rows and two columns

   Return values are either 0/1/2/3 = G/M/C/Y or 0/1/2/3 = R/G1/B/G2
 */
#define FC(row,col) \
    (int)(filters >> ((((row) << 1 & 14) + ((col) & 1)) << 1) & 3)

#define BAYER(row,col) \
    image[((row) >> shrink)*iwidth + ((col) >> shrink)][FC(row,col)]

int CLASS fcol_INDI(const unsigned filters, const int row, const int col,
                    const int top_margin, const int left_margin,
                    /*const*/ char xtrans[6][6])
{
    static const char filter[16][16] = {
        { 2, 1, 1, 3, 2, 3, 2, 0, 3, 2, 3, 0, 1, 2, 1, 0 },
        { 0, 3, 0, 2, 0, 1, 3, 1, 0, 1, 1, 2, 0, 3, 3, 2 },
        { 2, 3, 3, 2, 3, 1, 1, 3, 3, 1, 2, 1, 2, 0, 0, 3 },
        { 0, 1, 0, 1, 0, 2, 0, 2, 2, 0, 3, 0, 1, 3, 2, 1 },
        { 3, 1, 1, 2, 0, 1, 0, 2, 1, 3, 1, 3, 0, 1, 3, 0 },
        { 2, 0, 0, 3, 3, 2, 3, 1, 2, 0, 2, 0, 3, 2, 2, 1 },
        { 2, 3, 3, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 0, 0, 1 },
        { 1, 0, 0, 2, 3, 0, 0, 3, 0, 3, 0, 3, 2, 1, 2, 3 },
        { 2, 3, 3, 1, 1, 2, 1, 0, 3, 2, 3, 0, 2, 3, 1, 3 },
        { 1, 0, 2, 0, 3, 0, 3, 2, 0, 1, 1, 2, 0, 1, 0, 2 },
        { 0, 1, 1, 3, 3, 2, 2, 1, 1, 3, 3, 0, 2, 1, 3, 2 },
        { 2, 3, 2, 0, 0, 1, 3, 0, 2, 0, 1, 2, 3, 0, 1, 0 },
        { 1, 3, 1, 2, 3, 2, 3, 2, 0, 2, 0, 1, 1, 0, 3, 0 },
        { 0, 2, 0, 3, 1, 0, 0, 1, 1, 3, 3, 2, 3, 2, 2, 1 },
        { 2, 1, 3, 2, 3, 1, 2, 1, 0, 3, 0, 2, 0, 2, 0, 2 },
        { 0, 3, 1, 0, 0, 2, 0, 3, 2, 1, 3, 1, 1, 3, 1, 3 }
    };

    if (filters == 1) return filter[(row + top_margin) & 15][(col + left_margin) & 15];
    if (filters == 9) return xtrans[(row + 6) % 6][(col + 6) % 6];
    return FC(row, col);
}

static void CLASS merror(void *ptr, char *where)
{
    if (ptr) return;
    g_error("Out of memory in %s\n", where);
}

static void CLASS hat_transform(float *temp, float *base, int st, int size, int sc)
{
    int i;
    for (i = 0; i < sc; i++)
        temp[i] = 2 * base[st * i] + base[st * (sc - i)] + base[st * (i + sc)];
    for (; i + sc < size; i++)
        temp[i] = 2 * base[st * i] + base[st * (i - sc)] + base[st * (i + sc)];
    for (; i < size; i++)
        temp[i] = 2 * base[st * i] + base[st * (i - sc)] + base[st * (2 * size - 2 - (i + sc))];
}

void CLASS wavelet_denoise_INDI(ushort(*image)[4], const int black,
                                const int iheight, const int iwidth,
                                const int height, const int width,
                                const int colors, const int shrink,
                                const float pre_mul[4], const float threshold,
                                const unsigned filters)
{
    float *fimg = 0, thold, mul[2], avg, diff;
    int size, lev, hpass, lpass, row, col, nc, c, i, wlast;
    ushort *window[4];
    static const float noise[] =
    { 0.8002, 0.2735, 0.1202, 0.0585, 0.0291, 0.0152, 0.0080, 0.0044 };

//  dcraw_message (dcraw, DCRAW_VERBOSE,_("Wavelet denoising...\n")); /*UF*/

    /* Scaling is done somewhere else - NKBJ*/
    size = iheight * iwidth;
    float temp[iheight + iwidth];
    if ((nc = colors) == 3 && filters) nc++;
    progress(PROGRESS_WAVELET_DENOISE, -nc * 5);
#ifdef _OPENMP
#if defined(__sun) && !defined(__GNUC__)	/* Fix bug #3205673 - NKBJ */
    #pragma omp parallel for				\
    default(none)					\
    shared(nc,image,size,noise)				\
    private(c,i,hpass,lev,lpass,row,col,thold,fimg,temp)
#else
    #pragma omp parallel for				\
    default(none)					\
    shared(nc,image,size)				\
    private(c,i,hpass,lev,lpass,row,col,thold,fimg,temp)
#endif
#endif
    FORC(nc) {			/* denoise R,G1,B,G3 individually */
        fimg = (float *) malloc(size * 3 * sizeof * fimg);
        for (i = 0; i < size; i++)
            fimg[i] = 256 * sqrt(image[i][c] /*<< scale*/);
        for (hpass = lev = 0; lev < 5; lev++) {
            progress(PROGRESS_WAVELET_DENOISE, 1);
            lpass = size * ((lev & 1) + 1);
            for (row = 0; row < iheight; row++) {
                hat_transform(temp, fimg + hpass + row * iwidth, 1, iwidth, 1 << lev);
                for (col = 0; col < iwidth; col++)
                    fimg[lpass + row * iwidth + col] = temp[col] * 0.25;
            }
            for (col = 0; col < iwidth; col++) {
                hat_transform(temp, fimg + lpass + col, iwidth, iheight, 1 << lev);
                for (row = 0; row < iheight; row++)
                    fimg[lpass + row * iwidth + col] = temp[row] * 0.25;
            }
            thold = threshold * noise[lev];
            for (i = 0; i < size; i++) {
                fimg[hpass + i] -= fimg[lpass + i];
                if	(fimg[hpass + i] < -thold) fimg[hpass + i] += thold;
                else if (fimg[hpass + i] >  thold) fimg[hpass + i] -= thold;
                else	 fimg[hpass + i] = 0;
                if (hpass) fimg[i] += fimg[hpass + i];
            }
            hpass = lpass;
        }
        for (i = 0; i < size; i++)
            image[i][c] = CLIP(SQR(fimg[i] + fimg[lpass + i]) / 0x10000);
        free(fimg);
    }
    if (filters && colors == 3) {  /* pull G1 and G3 closer together */
        for (row = 0; row < 2; row++)
            mul[row] = 0.125 * pre_mul[FC(row + 1, 0) | 1] / pre_mul[FC(row, 0) | 1];
        ushort window_mem[4][width];
        for (i = 0; i < 4; i++)
            window[i] = window_mem[i]; /*(ushort *) fimg + width*i;*/
        for (wlast = -1, row = 1; row < height - 1; row++) {
            while (wlast < row + 1) {
                for (wlast++, i = 0; i < 4; i++)
                    window[(i + 3) & 3] = window[i];
                for (col = FC(wlast, 1) & 1; col < width; col += 2)
                    window[2][col] = BAYER(wlast, col);
            }
            thold = threshold / 512;
            for (col = (FC(row, 0) & 1) + 1; col < width - 1; col += 2) {
                avg = (window[0][col - 1] + window[0][col + 1] +
                       window[2][col - 1] + window[2][col + 1] - black * 4)
                      * mul[row & 1] + (window[1][col] - black) * 0.5 + black;
                avg = avg < 0 ? 0 : sqrt(avg);
                diff = sqrt(BAYER(row, col)) - avg;
                if (diff < -thold) diff += thold;
                else if (diff >  thold) diff -= thold;
                else diff = 0;
                BAYER(row, col) = CLIP(SQR(avg + diff) + 0.5);
            }
        }
    }
}

void CLASS scale_colors_INDI(const int maximum, const int black,
                             const int use_camera_wb, const float cam_mul[4], const int colors,
                             float pre_mul[4], const unsigned filters, /*const*/ ushort white[8][8],
                             const char *ifname_display, void *dcraw)
{
    unsigned row, col, c, sum[8];
    int val;
    double dmin, dmax;

    if (use_camera_wb && cam_mul[0] != -1) {
        memset(sum, 0, sizeof sum);
        for (row = 0; row < 8; row++)
            for (col = 0; col < 8; col++) {
                c = FC(row, col);
                if ((val = white[row][col] - black) > 0)
                    sum[c] += val;
                sum[c + 4]++;
            }
        if (sum[0] && sum[1] && sum[2] && sum[3])
            FORC4 pre_mul[c] = (float) sum[c + 4] / sum[c];
        else if (cam_mul[0] && cam_mul[2])
            /* 'sizeof pre_mul' does not work because pre_mul is an argument (UF)*/
            memcpy(pre_mul, cam_mul, 4 * sizeof(float));
        else
            dcraw_message(dcraw, DCRAW_NO_CAMERA_WB,
                          _("%s: Cannot use camera white balance.\n"), ifname_display);
    } else {
        dcraw_message(dcraw, DCRAW_NO_CAMERA_WB,
                      _("%s: Cannot use camera white balance.\n"), ifname_display);
    }
    if (pre_mul[1] == 0) pre_mul[1] = 1;
    if (pre_mul[3] == 0) pre_mul[3] = colors < 4 ? pre_mul[1] : 1;
    for (dmin = DBL_MAX, dmax = c = 0; c < 4; c++) {
        if (dmin > pre_mul[c])
            dmin = pre_mul[c];
        if (dmax < pre_mul[c])
            dmax = pre_mul[c];
    }
    FORC4 pre_mul[c] /= dmax;
    dcraw_message(dcraw, DCRAW_VERBOSE,
                  _("Scaling with darkness %d, saturation %d, and\nmultipliers"),
                  black, maximum);
    FORC4 dcraw_message(dcraw, DCRAW_VERBOSE, " %f", pre_mul[c]);
    dcraw_message(dcraw, DCRAW_VERBOSE, "\n");

    /* The rest of the scaling is done somewhere else UF*/
}

void CLASS border_interpolate_INDI(const int height, const int width,
                                   ushort(*image)[4], const unsigned filters, int colors, int border, dcraw_data *h)
{
    int row, col, y, x, f, c, sum[8];

    for (row = 0; row < height; row++)
        for (col = 0; col < width; col++) {
            if (col == border && row >= border && row < height - border)
                col = width - border;
            memset(sum, 0, sizeof sum);
            for (y = row - 1; y != row + 2; y++)
                for (x = col - 1; x != col + 2; x++)
                    if (y >= 0 && y < height && x >= 0 && x < width) {
                        f = fcol_INDI(filters, y, x, h->top_margin, h->left_margin, h->xtrans);
                        sum[f] += image[y * width + x][f];
                        sum[f + 4]++;
                    }
            f = fcol_INDI(filters, row, col, h->top_margin, h->left_margin, h->xtrans);
            FORCC if (c != f && sum[c + 4])
                image[row * width + col][c] = sum[c] / sum[c + 4];
        }
}

void CLASS lin_interpolate_INDI(ushort(*image)[4], const unsigned filters,
                                const int width, const int height, const int colors, void *dcraw, dcraw_data *h) /*UF*/
{
    int code[16][16][32], size = 16, *ip, sum[4];
    int f, c, i, x, y, row, col, shift, color;
    ushort *pix;

    dcraw_message(dcraw, DCRAW_VERBOSE, _("Bilinear interpolation...\n")); /*UF*/
    if (filters == 9) size = 6;
    border_interpolate_INDI(height, width, image, filters, colors, 1, h);
    for (row = 0; row < size; row++) {
        for (col = 0; col < size; col++) {
            ip = code[row][col] + 1;
            f = fcol_INDI(filters, row, col, h->top_margin, h->left_margin, h->xtrans);
            memset(sum, 0, sizeof sum);
            for (y = -1; y <= 1; y++)
                for (x = -1; x <= 1; x++) {
                    shift = (y == 0) + (x == 0);
                    color = fcol_INDI(filters, row + y, col + x, h->top_margin, h->left_margin, h->xtrans);
                    if (color == f) continue;
                    *ip++ = (width * y + x) * 4 + color;
                    *ip++ = shift;
                    *ip++ = color;
                    sum[color] += 1 << shift;
                }
            code[row][col][0] = (ip - code[row][col]) / 3;
            FORCC
            if (c != f) {
                *ip++ = c;
                *ip++ = 256 / sum[c];
            }
        }
    }
#ifdef _OPENMP
    #pragma omp parallel for default(shared) private(row,col,pix,ip,sum,i)
#endif
    for (row = 1; row < height - 1; row++) {
        for (col = 1; col < width - 1; col++) {
            pix = image[row * width + col];
            ip = code[row % size][col % size];
            memset(sum, 0, sizeof sum);
            for (i = *ip++; i--; ip += 3)
                sum[ip[2]] += pix[ip[0]] << ip[1];
            for (i = colors; --i; ip += 2)
                pix[ip[0]] = sum[ip[0]] * ip[1] >> 8;
        }
    }
}

/*
   This algorithm is officially called:

   "Interpolation using a Threshold-based variable number of gradients"

   described in http://scien.stanford.edu/class/psych221/projects/99/tingchen/algodep/vargra.html

   I've extended the basic idea to work with non-Bayer filter arrays.
   Gradients are numbered clockwise from NW=0 to W=7.
 */
void CLASS vng_interpolate_INDI(ushort(*image)[4], const unsigned filters,
                                const int width, const int height, const int colors, void *dcraw, dcraw_data *h) /*UF*/
{
    static const signed char *cp, terms[] = {
        -2, -2, +0, -1, 0, 0x01, -2, -2, +0, +0, 1, 0x01, -2, -1, -1, +0, 0, 0x01,
        -2, -1, +0, -1, 0, 0x02, -2, -1, +0, +0, 0, 0x03, -2, -1, +0, +1, 1, 0x01,
        -2, +0, +0, -1, 0, 0x06, -2, +0, +0, +0, 1, 0x02, -2, +0, +0, +1, 0, 0x03,
        -2, +1, -1, +0, 0, 0x04, -2, +1, +0, -1, 1, 0x04, -2, +1, +0, +0, 0, 0x06,
        -2, +1, +0, +1, 0, 0x02, -2, +2, +0, +0, 1, 0x04, -2, +2, +0, +1, 0, 0x04,
        -1, -2, -1, +0, 0, 0x80, -1, -2, +0, -1, 0, 0x01, -1, -2, +1, -1, 0, 0x01,
        -1, -2, +1, +0, 1, 0x01, -1, -1, -1, +1, 0, 0x88, -1, -1, +1, -2, 0, 0x40,
        -1, -1, +1, -1, 0, 0x22, -1, -1, +1, +0, 0, 0x33, -1, -1, +1, +1, 1, 0x11,
        -1, +0, -1, +2, 0, 0x08, -1, +0, +0, -1, 0, 0x44, -1, +0, +0, +1, 0, 0x11,
        -1, +0, +1, -2, 1, 0x40, -1, +0, +1, -1, 0, 0x66, -1, +0, +1, +0, 1, 0x22,
        -1, +0, +1, +1, 0, 0x33, -1, +0, +1, +2, 1, 0x10, -1, +1, +1, -1, 1, 0x44,
        -1, +1, +1, +0, 0, 0x66, -1, +1, +1, +1, 0, 0x22, -1, +1, +1, +2, 0, 0x10,
        -1, +2, +0, +1, 0, 0x04, -1, +2, +1, +0, 1, 0x04, -1, +2, +1, +1, 0, 0x04,
        +0, -2, +0, +0, 1, 0x80, +0, -1, +0, +1, 1, 0x88, +0, -1, +1, -2, 0, 0x40,
        +0, -1, +1, +0, 0, 0x11, +0, -1, +2, -2, 0, 0x40, +0, -1, +2, -1, 0, 0x20,
        +0, -1, +2, +0, 0, 0x30, +0, -1, +2, +1, 1, 0x10, +0, +0, +0, +2, 1, 0x08,
        +0, +0, +2, -2, 1, 0x40, +0, +0, +2, -1, 0, 0x60, +0, +0, +2, +0, 1, 0x20,
        +0, +0, +2, +1, 0, 0x30, +0, +0, +2, +2, 1, 0x10, +0, +1, +1, +0, 0, 0x44,
        +0, +1, +1, +2, 0, 0x10, +0, +1, +2, -1, 1, 0x40, +0, +1, +2, +0, 0, 0x60,
        +0, +1, +2, +1, 0, 0x20, +0, +1, +2, +2, 0, 0x10, +1, -2, +1, +0, 0, 0x80,
        +1, -1, +1, +1, 0, 0x88, +1, +0, +1, +2, 0, 0x08, +1, +0, +2, -1, 0, 0x40,
        +1, +0, +2, +1, 0, 0x10
    }, chood[] = { -1, -1, -1, 0, -1, +1, 0, +1, +1, +1, +1, 0, +1, -1, 0, -1 };
    ushort(*brow[4])[4], *pix;
    int prow = 8, pcol = 2, *ip, *code[16][16], gval[8], gmin, gmax, sum[4];
    int row, col, x, y, x1, x2, y1, y2, t, weight, grads, color, diag;
    int g, diff, thold, num, c;
    ushort rowtmp[4][width * 4];

    lin_interpolate_INDI(image, filters, width, height, colors, dcraw, h); /*UF*/
    dcraw_message(dcraw, DCRAW_VERBOSE, _("VNG interpolation...\n")); /*UF*/

    if (filters == 1) prow = pcol = 16;
    if (filters == 9) prow = pcol =  6;
    int *ipalloc = ip = (int *) calloc(prow * pcol, 1280);
    merror(ip, "vng_interpolate()");
    for (row = 0; row < prow; row++)		/* Precalculate for VNG */
        for (col = 0; col < pcol; col++) {
            code[row][col] = ip;
            for (cp = terms, t = 0; t < 64; t++) {
                y1 = *cp++;
                x1 = *cp++;
                y2 = *cp++;
                x2 = *cp++;
                weight = *cp++;
                grads = *cp++;
                color = fcol_INDI(filters, row + y1, col + x1, h->top_margin, h->left_margin, h->xtrans);
                if (fcol_INDI(filters, row + y2, col + x2, h->top_margin, h->left_margin, h->xtrans) != color) continue;
                diag = (fcol_INDI(filters, row, col + 1, h->top_margin, h->left_margin, h->xtrans) == color && fcol_INDI(filters, row + 1, col, h->top_margin, h->left_margin, h->xtrans) == color) ? 2 : 1;
                if (abs(y1 - y2) == diag && abs(x1 - x2) == diag) continue;
                *ip++ = (y1 * width + x1) * 4 + color;
                *ip++ = (y2 * width + x2) * 4 + color;
                *ip++ = weight;
                for (g = 0; g < 8; g++)
                    if (grads & 1 << g) *ip++ = g;
                *ip++ = -1;
            }
            *ip++ = INT_MAX;
            for (cp = chood, g = 0; g < 8; g++) {
                y = *cp++;
                x = *cp++;
                *ip++ = (y * width + x) * 4;
                color = fcol_INDI(filters, row, col, h->top_margin, h->left_margin, h->xtrans);
                if (fcol_INDI(filters, row + y, col + x, h->top_margin, h->left_margin, h->xtrans) != color && fcol_INDI(filters, row + y * 2, col + x * 2, h->top_margin, h->left_margin, h->xtrans) == color)
                    *ip++ = (y * width + x) * 8 + color;
                else
                    *ip++ = 0;
            }
        }
    progress(PROGRESS_INTERPOLATE, -height);
#ifdef _OPENMP
    #pragma omp parallel				\
    default(none)					\
    shared(image,code,prow,pcol,h)			\
    private(row,col,g,brow,rowtmp,pix,ip,gval,diff,gmin,gmax,thold,sum,color,num,c,t)
#endif
    {
        int slice = (height - 4) / uf_omp_get_num_threads();
        int start_row = 2 + slice * uf_omp_get_thread_num();
        int end_row = MIN(start_row + slice, height - 2);
        for (row = start_row; row < end_row; row++) { /* Do VNG interpolation */
            progress(PROGRESS_INTERPOLATE, 1);
            for (g = 0; g < 4; g++)
                brow[g] = &rowtmp[(row + g - 2) % 4];
            for (col = 2; col < width - 2; col++) {
                pix = image[row * width + col];
                ip = code[row % prow][col % pcol];
                memset(gval, 0, sizeof gval);
                while ((g = ip[0]) != INT_MAX) { /* Calculate gradients */
                    diff = ABS(pix[g] - pix[ip[1]]) << ip[2];
                    gval[ip[3]] += diff;
                    ip += 5;
                    if ((g = ip[-1]) == -1) continue;
                    gval[g] += diff;
                    while ((g = *ip++) != -1)
                        gval[g] += diff;
                }
                ip++;
                gmin = gmax = gval[0]; /* Choose a threshold */
                for (g = 1; g < 8; g++) {
                    if (gmin > gval[g]) gmin = gval[g];
                    if (gmax < gval[g]) gmax = gval[g];
                }
                if (gmax == 0) {
                    memcpy(brow[2][col], pix, sizeof * image);
                    continue;
                }
                thold = gmin + (gmax >> 1);
                memset(sum, 0, sizeof sum);
                color = fcol_INDI(filters, row, col, h->top_margin, h->left_margin, h->xtrans);
                for (num = g = 0; g < 8; g++, ip += 2) { /* Average the neighbors */
                    if (gval[g] <= thold) {
                        FORCC
                        if (c == color && ip[1])
                            sum[c] += (pix[c] + pix[ip[1]]) >> 1;
                        else
                            sum[c] += pix[ip[0] + c];
                        num++;
                    }
                }
                FORCC {				/* Save to buffer */
                    t = pix[color];
                    if (c != color)
                        t += (sum[c] - sum[color]) / num;
                    brow[2][col][c] = CLIP(t);
                }
            }
            /* Write buffer to image */
            if ((row > start_row + 1) || (row == height - 2))
                memcpy(image[(row - 2)*width + 2], brow[0] + 2, (width - 4)*sizeof * image);
            if (row == height - 2) {
                memcpy(image[(row - 1)*width + 2], brow[1] + 2, (width - 4)*sizeof * image);
                break;
            }
        }
    }
    free(ipalloc);
}

/*
   Patterned Pixel Grouping Interpolation by Alain Desbiolles
*/
void CLASS ppg_interpolate_INDI(ushort(*image)[4], const unsigned filters,
                                const int width, const int height,
                                const int colors, void *dcraw, dcraw_data *h)
{
    int dir[5] = { 1, width, -1, -width, 1 };
    int row, col, diff[2] = { 0, 0 }, guess[2], c, d, i;
    ushort(*pix)[4];

    border_interpolate_INDI(height, width, image, filters, colors, 3, h);
    dcraw_message(dcraw, DCRAW_VERBOSE, _("PPG interpolation...\n")); /*UF*/

#ifdef _OPENMP
    #pragma omp parallel				\
    default(none)					\
    shared(image,dir,diff)				\
    private(row,col,i,d,c,pix,guess)
#endif
    {
        /*  Fill in the green layer with gradients and pattern recognition: */
#ifdef _OPENMP
        #pragma omp for
#endif
        for (row = 3; row < height - 3; row++) {
            for (col = 3 + (FC(row, 3) & 1), c = FC(row, col); col < width - 3; col += 2) {
                pix = image + row * width + col;
                for (i = 0; (d = dir[i]) > 0; i++) {
                    guess[i] = (pix[-d][1] + pix[0][c] + pix[d][1]) * 2
                               - pix[-2 * d][c] - pix[2 * d][c];
                    diff[i] = (ABS(pix[-2 * d][c] - pix[ 0][c]) +
                               ABS(pix[ 2 * d][c] - pix[ 0][c]) +
                               ABS(pix[  -d][1] - pix[ d][1])) * 3 +
                              (ABS(pix[ 3 * d][1] - pix[ d][1]) +
                               ABS(pix[-3 * d][1] - pix[-d][1])) * 2;
                }
                d = dir[i = diff[0] > diff[1]];
                pix[0][1] = ULIM(guess[i] >> 2, pix[d][1], pix[-d][1]);
            }
        }
        /*  Calculate red and blue for each green pixel: */
#ifdef _OPENMP
        #pragma omp for
#endif
        for (row = 1; row < height - 1; row++) {
            for (col = 1 + (FC(row, 2) & 1), c = FC(row, col + 1); col < width - 1; col += 2) {
                pix = image + row * width + col;
                for (i = 0; (d = dir[i]) > 0; c = 2 - c, i++)
                    pix[0][c] = CLIP((pix[-d][c] + pix[d][c] + 2 * pix[0][1]
                                      - pix[-d][1] - pix[d][1]) >> 1);
            }
        }
        /*  Calculate blue for red pixels and vice versa: */
#ifdef _OPENMP
        #pragma omp for
#endif
        for (row = 1; row < height - 1; row++) {
            for (col = 1 + (FC(row, 1) & 1), c = 2 - FC(row, col); col < width - 1; col += 2) {
                pix = image + row * width + col;
                for (i = 0; (d = dir[i] + dir[i + 1]) > 0; i++) {
                    diff[i] = ABS(pix[-d][c] - pix[d][c]) +
                              ABS(pix[-d][1] - pix[0][1]) +
                              ABS(pix[ d][1] - pix[0][1]);
                    guess[i] = pix[-d][c] + pix[d][c] + 2 * pix[0][1]
                               - pix[-d][1] - pix[d][1];
                }
                if (diff[0] != diff[1])
                    pix[0][c] = CLIP(guess[diff[0] > diff[1]] >> 1);
                else
                    pix[0][c] = CLIP((guess[0] + guess[1]) >> 2);
            }
        }
    }
}

void CLASS cielab_INDI(ushort rgb[3], short lab[3], const int colors,
                       const float rgb_cam[3][4])
{
    int c, i, j, k;
    float r, xyz[3];
    static float cbrt[0x10000], xyz_cam[3][4];

    if (!rgb) {
        for (i = 0; i < 0x10000; i++) {
            r = i / 65535.0;
            cbrt[i] = r > 0.008856 ? pow(r, (float)(1 / 3.0)) : 7.787 * r + 16 / 116.0;
        }
        for (i = 0; i < 3; i++)
            for (j = 0; j < colors; j++)
                for (xyz_cam[i][j] = k = 0; k < 3; k++)
                    xyz_cam[i][j] += xyz_rgb[i][k] * rgb_cam[k][j] / d65_white[i];
        return;
    }
    xyz[0] = xyz[1] = xyz[2] = 0.5;
    FORCC {
        xyz[0] += xyz_cam[0][c] * rgb[c];
        xyz[1] += xyz_cam[1][c] * rgb[c];
        xyz[2] += xyz_cam[2][c] * rgb[c];
    }
    xyz[0] = cbrt[CLIP((int) xyz[0])];
    xyz[1] = cbrt[CLIP((int) xyz[1])];
    xyz[2] = cbrt[CLIP((int) xyz[2])];
    lab[0] = 64 * (116 * xyz[1] - 16);
    lab[1] = 64 * 500 * (xyz[0] - xyz[1]);
    lab[2] = 64 * 200 * (xyz[1] - xyz[2]);
}

#define TS 512		/* Tile Size */
/*
   Frank Markesteijn's algorithm for Fuji X-Trans sensors
 */
void CLASS xtrans_interpolate_INDI(ushort(*image)[4], const unsigned filters,
                                   const int width, const int height,
                                   const int colors, const float rgb_cam[3][4],
                                   void *dcraw, dcraw_data *hh, const int passes)
{
    int c, d, f, g, h, i, v, ng, row, col, top, left, mrow, mcol;
    int val, ndir, pass, hm[8], avg[4], color[3][8];
    static const short orth[12] = { 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 1 },
    patt[2][16] = { { 0, 1, 0, -1, 2, 0, -1, 0, 1, 1, 1, -1, 0, 0, 0, 0 },
        { 0, 1, 0, -2, 1, 0, -2, 0, 1, 1, -2, -2, 1, -1, -1, 1 }
    },
    dir[4] = { 1, TS, TS + 1, TS - 1 };
    short allhex[3][3][2][8], *hex;
    ushort min, max, sgrow = 0, sgcol = 0;
    ushort(*rgb)[TS][TS][3], (*rix)[3], (*pix)[4];
    short(*lab)    [TS][3], (*lix)[3];
    float(*drv)[TS][TS], diff[6], tr;
    char(*homo)[TS][TS], *buffer;

    dcraw_message(dcraw, DCRAW_VERBOSE, _("%d-pass X-Trans interpolation...\n"), passes); /*NKBJ*/

    cielab_INDI(0, 0, colors, rgb_cam);
    border_interpolate_INDI(height, width, image, filters, colors, 6, hh);
    ndir = 4 << (passes > 1);

    /* Map a green hexagon around each non-green pixel and vice versa:      */
    for (row = 0; row < 3; row++)
        for (col = 0; col < 3; col++)
            for (ng = d = 0; d < 10; d += 2) {
                g = fcol_INDI(filters, row, col, hh->top_margin, hh->left_margin, hh->xtrans) == 1;
                if (fcol_INDI(filters, row + orth[d], col + orth[d + 2], hh->top_margin, hh->left_margin, hh->xtrans) == 1) ng = 0;
                else ng++;
                if (ng == 4) {
                    sgrow = row;
                    sgcol = col;
                }
                if (ng == g + 1) FORC(8) {
                    v = orth[d  ] * patt[g][c * 2] + orth[d + 1] * patt[g][c * 2 + 1];
                    h = orth[d + 2] * patt[g][c * 2] + orth[d + 3] * patt[g][c * 2 + 1];
                    allhex[row][col][0][c ^ (g * 2 & d)] = h + v * width;
                    allhex[row][col][1][c ^ (g * 2 & d)] = h + v * TS;
                }
            }

    /* Set green1 and green3 to the minimum and maximum allowed values:     */
    for (row = 2; row < height - 2; row++)
        for (min = ~(max = 0), col = 2; col < width - 2; col++) {
            if (fcol_INDI(filters, row, col, hh->top_margin, hh->left_margin, hh->xtrans) == 1 && (min = ~(max = 0))) continue;
            pix = image + row * width + col;
            hex = allhex[row % 3][col % 3][0];
            if (!max) FORC(6) {
                val = pix[hex[c]][1];
                if (min > val) min = val;
                if (max < val) max = val;
            }
            pix[0][1] = min;
            pix[0][3] = max;
            switch ((row - sgrow) % 3) {
                case 1:
                    if (row < height - 3) {
                        row++;
                        col--;
                    }
                    break;
                case 2:
                    if ((min = ~(max = 0)) && (col += 2) < width - 3 && row > 2) row--;
            }
        }


#ifdef _OPENMP
    #pragma omp parallel				\
    default(shared)					\
    private(top, left, row, col, pix, mrow, mcol, hex, color, c, pass, rix, val, d, f, g, h, i, diff, lix, tr, avg, v, buffer, rgb, lab, drv, homo, hm, max)
#endif
    {
        buffer = (char *) malloc(TS * TS * (ndir * 11 + 6));
        merror(buffer, "xtrans_interpolate()");
        rgb  = (ushort(*)[TS][TS][3]) buffer;
        lab  = (short(*)    [TS][3])(buffer + TS * TS * (ndir * 6));
        drv  = (float(*)[TS][TS])(buffer + TS * TS * (ndir * 6 + 6));
        homo = (char(*)[TS][TS])(buffer + TS * TS * (ndir * 10 + 6));

        progress(PROGRESS_INTERPOLATE, -height);

#ifdef _OPENMP
        #pragma omp for
#endif

        for (top = 3; top < height - 19; top += TS - 16) {
            progress(PROGRESS_INTERPOLATE, TS - 16);
            for (left = 3; left < width - 19; left += TS - 16) {
                mrow = MIN(top + TS, height - 3);
                mcol = MIN(left + TS, width - 3);
                for (row = top; row < mrow; row++)
                    for (col = left; col < mcol; col++)
                        memcpy(rgb[0][row - top][col - left], image[row * width + col], 6);
                FORC3 memcpy(rgb[c + 1], rgb[0], sizeof * rgb);

                /* Interpolate green horizontally, vertically, and along both diagonals: */
                for (row = top; row < mrow; row++)
                    for (col = left; col < mcol; col++) {
                        if ((f = fcol_INDI(filters, row, col, hh->top_margin, hh->left_margin, hh->xtrans)) == 1) continue;
                        pix = image + row * width + col;
                        hex = allhex[row % 3][col % 3][0];
                        color[1][0] = 174 * (pix[  hex[1]][1] + pix[  hex[0]][1]) -
                                      46 * (pix[2 * hex[1]][1] + pix[2 * hex[0]][1]);
                        color[1][1] = 223 *  pix[  hex[3]][1] + pix[  hex[2]][1] * 33 +
                                      92 * (pix[      0 ][f] - pix[ -hex[2]][f]);
                        FORC(2) color[1][2 + c] =
                            164 * pix[hex[4 + c]][1] + 92 * pix[-2 * hex[4 + c]][1] + 33 *
                            (2 * pix[0][f] - pix[3 * hex[4 + c]][f] - pix[-3 * hex[4 + c]][f]);
                        FORC4 rgb[c ^ !((row - sgrow) % 3)][row - top][col - left][1] =
                            LIM(color[1][c] >> 8, pix[0][1], pix[0][3]);
                    }

                for (pass = 0; pass < passes; pass++) {
                    if (pass == 1)
                        memcpy(rgb += 4, buffer, 4 * sizeof * rgb);

                    /* Recalculate green from interpolated values of closer pixels: */
                    if (pass) {
                        for (row = top + 2; row < mrow - 2; row++)
                            for (col = left + 2; col < mcol - 2; col++) {
                                if ((f = fcol_INDI(filters, row, col, hh->top_margin, hh->left_margin, hh->xtrans)) == 1) continue;
                                pix = image + row * width + col;
                                hex = allhex[row % 3][col % 3][1];
                                for (d = 3; d < 6; d++) {
                                    rix = &rgb[(d - 2) ^ !((row - sgrow) % 3)][row - top][col - left];
                                    val = rix[-2 * hex[d]][1] + 2 * rix[hex[d]][1]
                                          - rix[-2 * hex[d]][f] - 2 * rix[hex[d]][f] + 3 * rix[0][f];
                                    rix[0][1] = LIM(val / 3, pix[0][1], pix[0][3]);
                                }
                            }
                    }

                    /* Interpolate red and blue values for solitary green pixels:   */
                    for (row = (top - sgrow + 4) / 3 * 3 + sgrow; row < mrow - 2; row += 3)
                        for (col = (left - sgcol + 4) / 3 * 3 + sgcol; col < mcol - 2; col += 3) {
                            rix = &rgb[0][row - top][col - left];
                            h = fcol_INDI(filters, row, col + 1, hh->top_margin, hh->left_margin, hh->xtrans);
                            memset(diff, 0, sizeof diff);
                            for (i = 1, d = 0; d < 6; d++, i ^= TS ^ 1, h ^= 2) {
                                for (c = 0; c < 2; c++, h ^= 2) {
                                    g = 2 * rix[0][1] - rix[i << c][1] - rix[-i << c][1];
                                    color[h][d] = g + rix[i << c][h] + rix[-i << c][h];
                                    if (d > 1)
                                        diff[d] += SQR(rix[i << c][1] - rix[-i << c][1]
                                                       - rix[i << c][h] + rix[-i << c][h]) + SQR(g);
                                }
                                if (d > 1 && (d & 1))
                                    if (diff[d - 1] < diff[d])
                                        FORC(2) color[c * 2][d] = color[c * 2][d - 1];
                                if (d < 2 || (d & 1)) {
                                    FORC(2) rix[0][c * 2] = CLIP(color[c * 2][d] / 2);
                                    rix += TS * TS;
                                }
                            }
                        }

                    /* Interpolate red for blue pixels and vice versa:              */
                    for (row = top + 1; row < mrow - 1; row++)
                        for (col = left + 1; col < mcol - 1; col++) {
                            if ((f = 2 - fcol_INDI(filters, row, col, hh->top_margin, hh->left_margin, hh->xtrans)) == 1) continue;
                            rix = &rgb[0][row - top][col - left];
                            i = (row - sgrow) % 3 ? TS : 1;
                            for (d = 0; d < 4; d++, rix += TS * TS)
                                rix[0][f] = CLIP((rix[i][f] + rix[-i][f] +
                                                  2 * rix[0][1] - rix[i][1] - rix[-i][1]) / 2);
                        }

                    /* Fill in red and blue for 2x2 blocks of green:                */
                    for (row = top + 2; row < mrow - 2; row++) if ((row - sgrow) % 3)
                            for (col = left + 2; col < mcol - 2; col++) if ((col - sgcol) % 3) {
                                    rix = &rgb[0][row - top][col - left];
                                    hex = allhex[row % 3][col % 3][1];
                                    for (d = 0; d < ndir; d += 2, rix += TS * TS)
                                        if (hex[d] + hex[d + 1]) {
                                            g = 3 * rix[0][1] - 2 * rix[hex[d]][1] - rix[hex[d + 1]][1];
                                            for (c = 0; c < 4; c += 2) rix[0][c] =
                                                    CLIP((g + 2 * rix[hex[d]][c] + rix[hex[d + 1]][c]) / 3);
                                        } else {
                                            g = 2 * rix[0][1] - rix[hex[d]][1] - rix[hex[d + 1]][1];
                                            for (c = 0; c < 4; c += 2) rix[0][c] =
                                                    CLIP((g + rix[hex[d]][c] + rix[hex[d + 1]][c]) / 2);
                                        }
                                }
                }
                rgb = (ushort(*)[TS][TS][3]) buffer;
                mrow -= top;
                mcol -= left;

                /* Convert to CIELab and differentiate in all directions:       */
                for (d = 0; d < ndir; d++) {
                    for (row = 2; row < mrow - 2; row++)
                        for (col = 2; col < mcol - 2; col++)
                            cielab_INDI(rgb[d][row][col], lab[row][col], colors, rgb_cam);
                    for (f = dir[d & 3], row = 3; row < mrow - 3; row++)
                        for (col = 3; col < mcol - 3; col++) {
                            lix = &lab[row][col];
                            g = 2 * lix[0][0] - lix[f][0] - lix[-f][0];
                            drv[d][row][col] = SQR(g)
                                               + SQR((2 * lix[0][1] - lix[f][1] - lix[-f][1] + g * 500 / 232))
                                               + SQR((2 * lix[0][2] - lix[f][2] - lix[-f][2] - g * 500 / 580));
                        }
                }

                /* Build homogeneity maps from the derivatives:                 */
                memset(homo, 0, ndir * TS * TS);
                for (row = 4; row < mrow - 4; row++)
                    for (col = 4; col < mcol - 4; col++) {
                        for (tr = FLT_MAX, d = 0; d < ndir; d++)
                            if (tr > drv[d][row][col])
                                tr = drv[d][row][col];
                        tr *= 8;
                        for (d = 0; d < ndir; d++)
                            for (v = -1; v <= 1; v++)
                                for (h = -1; h <= 1; h++)
                                    if (drv[d][row + v][col + h] <= tr)
                                        homo[d][row][col]++;
                    }

                /* Average the most homogenous pixels for the final result:     */
                if (height - top < TS + 4) mrow = height - top + 2;
                if (width - left < TS + 4) mcol = width - left + 2;
                for (row = MIN(top, 8); row < mrow - 8; row++)
                    for (col = MIN(left, 8); col < mcol - 8; col++) {
                        for (d = 0; d < ndir; d++)
                            for (hm[d] = 0, v = -2; v <= 2; v++)
                                for (h = -2; h <= 2; h++)
                                    hm[d] += homo[d][row + v][col + h];
                        for (d = 0; d < ndir - 4; d++)
                            if (hm[d] < hm[d + 4]) hm[d  ] = 0;
                            else if (hm[d] > hm[d + 4]) hm[d + 4] = 0;
                        for (max = hm[0], d = 1; d < ndir; d++)
                            if (max < hm[d]) max = hm[d];
                        max -= max >> 3;
                        memset(avg, 0, sizeof avg);
                        for (d = 0; d < ndir; d++)
                            if (hm[d] >= max) {
                                FORC3 avg[c] += rgb[d][row][col][c];
                                avg[3]++;
                            }
                        FORC3 image[(row + top)*width + col + left][c] = avg[c] / avg[3];
                    }
            }
        }
        free(buffer);
    } /* _OPENMP */
}

/*
   Adaptive Homogeneity-Directed interpolation is based on
   the work of Keigo Hirakawa, Thomas Parks, and Paul Lee.
 */
void CLASS ahd_interpolate_INDI(ushort(*image)[4], const unsigned filters,
                                const int width, const int height,
                                const int colors, const float rgb_cam[3][4],
                                void *dcraw, dcraw_data *h)
{
    int i, j, top, left, row, col, tr, tc, c, d, val, hm[2];
    static const int dir[4] = { -1, 1, -TS, TS };
    unsigned ldiff[2][4], abdiff[2][4], leps, abeps;
    ushort(*rgb)[TS][TS][3], (*rix)[3], (*pix)[4];
    short(*lab)[TS][TS][3], (*lix)[3];
    char(*homo)[TS][TS], *buffer;

    dcraw_message(dcraw, DCRAW_VERBOSE, _("AHD interpolation...\n")); /*UF*/

#ifdef _OPENMP
    #pragma omp parallel				\
    default(shared)					\
    private(top, left, row, col, pix, rix, lix, c, val, d, tc, tr, i, j, ldiff, abdiff, leps, abeps, hm, buffer, rgb, lab, homo)
#endif
    {
        cielab_INDI(0, 0, colors, rgb_cam);
        border_interpolate_INDI(height, width, image, filters, colors, 5, h);
        buffer = (char *) malloc(26 * TS * TS);
        merror(buffer, "ahd_interpolate()");
        rgb  = (ushort(*)[TS][TS][3]) buffer;
        lab  = (short(*)[TS][TS][3])(buffer + 12 * TS * TS);
        homo = (char(*)[TS][TS])(buffer + 24 * TS * TS);

        progress(PROGRESS_INTERPOLATE, -height);
#ifdef _OPENMP
        #pragma omp for
#endif
        for (top = 2; top < height - 5; top += TS - 6) {
            progress(PROGRESS_INTERPOLATE, TS - 6);
            for (left = 2; left < width - 5; left += TS - 6) {

                /*  Interpolate green horizontally and vertically: */
                for (row = top; row < top + TS && row < height - 2; row++) {
                    col = left + (FC(row, left) & 1);
                    for (c = FC(row, col); col < left + TS && col < width - 2; col += 2) {
                        pix = image + row * width + col;
                        val = ((pix[-1][1] + pix[0][c] + pix[1][1]) * 2
                               - pix[-2][c] - pix[2][c]) >> 2;
                        rgb[0][row - top][col - left][1] = ULIM(val, pix[-1][1], pix[1][1]);
                        val = ((pix[-width][1] + pix[0][c] + pix[width][1]) * 2
                               - pix[-2 * width][c] - pix[2 * width][c]) >> 2;
                        rgb[1][row - top][col - left][1] = ULIM(val, pix[-width][1], pix[width][1]);
                    }
                }
                /*  Interpolate red and blue, and convert to CIELab: */
                for (d = 0; d < 2; d++)
                    for (row = top + 1; row < top + TS - 1 && row < height - 3; row++)
                        for (col = left + 1; col < left + TS - 1 && col < width - 3; col++) {
                            pix = image + row * width + col;
                            rix = &rgb[d][row - top][col - left];
                            lix = &lab[d][row - top][col - left];
                            if ((c = 2 - FC(row, col)) == 1) {
                                c = FC(row + 1, col);
                                val = pix[0][1] + ((pix[-1][2 - c] + pix[1][2 - c]
                                                    - rix[-1][1] - rix[1][1]) >> 1);
                                rix[0][2 - c] = CLIP(val);
                                val = pix[0][1] + ((pix[-width][c] + pix[width][c]
                                                    - rix[-TS][1] - rix[TS][1]) >> 1);
                            } else
                                val = rix[0][1] + ((pix[-width - 1][c] + pix[-width + 1][c]
                                                    + pix[+width - 1][c] + pix[+width + 1][c]
                                                    - rix[-TS - 1][1] - rix[-TS + 1][1]
                                                    - rix[+TS - 1][1] - rix[+TS + 1][1] + 1) >> 2);
                            rix[0][c] = CLIP(val);
                            c = FC(row, col);
                            rix[0][c] = pix[0][c];
                            cielab_INDI(rix[0], lix[0], colors, rgb_cam);
                        }
                /*  Build homogeneity maps from the CIELab images: */
                memset(homo, 0, 2 * TS * TS);
                for (row = top + 2; row < top + TS - 2 && row < height - 4; row++) {
                    tr = row - top;
                    for (col = left + 2; col < left + TS - 2 && col < width - 4; col++) {
                        tc = col - left;
                        for (d = 0; d < 2; d++) {
                            lix = &lab[d][tr][tc];
                            for (i = 0; i < 4; i++) {
                                ldiff[d][i] = ABS(lix[0][0] - lix[dir[i]][0]);
                                abdiff[d][i] = SQR(lix[0][1] - lix[dir[i]][1])
                                               + SQR(lix[0][2] - lix[dir[i]][2]);
                            }
                        }
                        leps = MIN(MAX(ldiff[0][0], ldiff[0][1]),
                                   MAX(ldiff[1][2], ldiff[1][3]));
                        abeps = MIN(MAX(abdiff[0][0], abdiff[0][1]),
                                    MAX(abdiff[1][2], abdiff[1][3]));
                        for (d = 0; d < 2; d++)
                            for (i = 0; i < 4; i++)
                                if (ldiff[d][i] <= leps && abdiff[d][i] <= abeps)
                                    homo[d][tr][tc]++;
                    }
                }
                /*  Combine the most homogenous pixels for the final result: */
                for (row = top + 3; row < top + TS - 3 && row < height - 5; row++) {
                    tr = row - top;
                    for (col = left + 3; col < left + TS - 3 && col < width - 5; col++) {
                        tc = col - left;
                        for (d = 0; d < 2; d++)
                            for (hm[d] = 0, i = tr - 1; i <= tr + 1; i++)
                                for (j = tc - 1; j <= tc + 1; j++)
                                    hm[d] += homo[d][i][j];
                        if (hm[0] != hm[1])
                            FORC3 image[row * width + col][c] = rgb[hm[1] > hm[0]][tr][tc][c];
                        else
                            FORC3 image[row * width + col][c] =
                                (rgb[0][tr][tc][c] + rgb[1][tr][tc][c]) >> 1;
                    }
                }
            }
        }
        free(buffer);
    } /* _OPENMP */
}
#undef TS


#define DTOP(x) ((x>65535) ? (unsigned short)65535 : (x<0) ? (unsigned short)0 : (unsigned short) x)

/*
 * MG - This comment applies to the 3x3 optimized median function
 *
 * The following routines have been built from knowledge gathered
 * around the Web. I am not aware of any copyright problem with
 * them, so use it as you want.
 * N. Devillard - 1998
 */

#define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); }
#define PIX_SWAP(a,b) { int temp=(a);(a)=(b);(b)=temp; }

static inline int median9(int *p)
{
    PIX_SORT(p[1], p[2]) ;
    PIX_SORT(p[4], p[5]) ;
    PIX_SORT(p[7], p[8]) ;
    PIX_SORT(p[0], p[1]) ;
    PIX_SORT(p[3], p[4]) ;
    PIX_SORT(p[6], p[7]) ;
    PIX_SORT(p[1], p[2]) ;
    PIX_SORT(p[4], p[5]) ;
    PIX_SORT(p[7], p[8]) ;
    PIX_SORT(p[0], p[3]) ;
    PIX_SORT(p[5], p[8]) ;
    PIX_SORT(p[4], p[7]) ;
    PIX_SORT(p[3], p[6]) ;
    PIX_SORT(p[1], p[4]) ;
    PIX_SORT(p[2], p[5]) ;
    PIX_SORT(p[4], p[7]) ;
    PIX_SORT(p[4], p[2]) ;
    PIX_SORT(p[6], p[4]) ;
    PIX_SORT(p[4], p[2]) ;
    return (p[4]) ;
}

#undef PIX_SWAP
#undef PIX_SORT

// Just making this function inline speeds up ahd_interpolate_INDI() up to 15%
static inline ushort eahd_median(int row, int col, int color,
                                 ushort(*image)[4], const int width)
{
    //declare the pixel array
    int pArray[9];
    int result;

    //perform the median filter (this only works for red or blue)
    //  result = median(R-G)+G or median(B-G)+G
    //
    // to perform the filter on green, it needs to be the average
    //  results = (median(G-R)+median(G-B)+R+B)/2

    //no checks are done here to speed up the inlining
    pArray[0] = image[width * (row) + col + 1][color] - image[width * (row) + col + 1][1];
    pArray[1] = image[width * (row - 1) + col + 1][color] - image[width * (row - 1) + col + 1][1];
    pArray[2] = image[width * (row - 1) + col  ][color] - image[width * (row - 1) + col  ][1];
    pArray[3] = image[width * (row - 1) + col - 1][color] - image[width * (row - 1) + col - 1][1];
    pArray[4] = image[width * (row) + col - 1][color] - image[width * (row) + col - 1][1];
    pArray[5] = image[width * (row + 1) + col - 1][color] - image[width * (row + 1) + col - 1][1];
    pArray[6] = image[width * (row + 1) + col  ][color] - image[width * (row + 1) + col  ][1];
    pArray[7] = image[width * (row + 1) + col + 1][color] - image[width * (row + 1) + col + 1][1];
    pArray[8] = image[width * (row) + col  ][color] - image[width * (row) + col  ][1];

    median9(pArray);
    result = pArray[4] + image[width * (row) + col  ][1];
    return DTOP(result);

}

// Add the color smoothing from Kimmel as suggested in the AHD paper
// Algorithm updated by Michael Goertz
void CLASS color_smooth(ushort(*image)[4], const int width, const int height,
                        const int passes)
{
    int row, col;
    int row_start = 2;
    int row_stop  = height - 2;
    int col_start = 2;
    int col_stop  = width - 2;
    //interate through all the colors
    int count;

    ushort *mpix;

    for (count = 0; count < passes; count++) {
        //perform 3 iterations - seems to be a commonly settled upon number of iterations
#ifdef _OPENMP
        #pragma omp parallel for default(shared) private(row,col,mpix)
#endif
        for (row = row_start; row < row_stop; row++) {
            for (col = col_start; col < col_stop; col++) {
                //calculate the median only over the red and blue
                //calculating over green seems to offer very little additional quality
                mpix = image[row * width + col];
                mpix[0] = eahd_median(row, col, 0, image, width);
                mpix[2] = eahd_median(row, col, 2, image, width);
            }
        }
    }
}

void CLASS fuji_rotate_INDI(ushort(**image_p)[4], int *height_p,
                            int *width_p, int *fuji_width_p, const int colors,
                            const double step, void *dcraw)
{
    int height = *height_p, width = *width_p, fuji_width = *fuji_width_p; /*UF*/
    ushort(*image)[4] = *image_p;  /*UF*/
    int i, row, col;
    float r, c, fr, fc;
    int ur, uc;
    ushort wide, high, (*img)[4], (*pix)[4];

    if (!fuji_width) return;
    dcraw_message(dcraw, DCRAW_VERBOSE, _("Rotating image 45 degrees...\n"));
    fuji_width = (fuji_width - 1/* + shrink*/)/* >> shrink*/;
    wide = fuji_width / step;
    high = (height - fuji_width) / step;
    img = (ushort(*)[4]) calloc(wide * high, sizeof * img);
    merror(img, "fuji_rotate()");

#ifdef _OPENMP
    #pragma omp parallel for default(shared) private(row,col,ur,uc,r,c,fr,fc,pix,i)
#endif
    for (row = 0; row < high; row++) {
        for (col = 0; col < wide; col++) {
            ur = r = fuji_width + (row - col) * step;
            uc = c = (row + col) * step;
            if (ur > height - 2 || uc > width - 2) continue;
            fr = r - ur;
            fc = c - uc;
            pix = image + ur * width + uc;
            for (i = 0; i < colors; i++)
                img[row * wide + col][i] =
                    (pix[    0][i] * (1 - fc) + pix[      1][i] * fc) * (1 - fr) +
                    (pix[width][i] * (1 - fc) + pix[width + 1][i] * fc) * fr;
        }
    }
    free(image);
    width  = wide;
    height = high;
    image  = img;
    fuji_width = 0;
    *height_p = height; /* INDI - UF*/
    *width_p = width;
    *fuji_width_p = fuji_width;
    *image_p = image;
}

void CLASS flip_image_INDI(ushort(*image)[4], int *height_p, int *width_p,
                           /*const*/ int flip) /*UF*/
{
    unsigned *flag;
    int size, base, dest, next, row, col;
    gint64 *img, hold;
    int height = *height_p, width = *width_p;/* INDI - UF*/

//  Message is suppressed because error handling is not enabled here.
//  dcraw_message (dcraw, DCRAW_VERBOSE,_("Flipping image %c:%c:%c...\n"),
//      flip & 1 ? 'H':'0', flip & 2 ? 'V':'0', flip & 4 ? 'T':'0'); /*UF*/

    img = (gint64 *) image;
    size = height * width;
    flag = calloc((size + 31) >> 5, sizeof * flag);
    merror(flag, "flip_image()");
    for (base = 0; base < size; base++) {
        if (flag[base >> 5] & (1 << (base & 31)))
            continue;
        dest = base;
        hold = img[base];
        while (1) {
            if (flip & 4) {
                row = dest % height;
                col = dest / height;
            } else {
                row = dest / width;
                col = dest % width;
            }
            if (flip & 2)
                row = height - 1 - row;
            if (flip & 1)
                col = width - 1 - col;
            next = row * width + col;
            if (next == base) break;
            flag[next >> 5] |= 1 << (next & 31);
            img[dest] = img[next];
            dest = next;
        }
        img[dest] = hold;
    }
    free(flag);
    if (flip & 4) SWAP(height, width);
    *height_p = height; /* INDI - UF*/
    *width_p = width;
}