1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/* ========================================================================== */
/* === ldlmex.c: LDL mexFunction =========================================== */
/* ========================================================================== */
/* MATLAB interface for numerical LDL' factorization using the LDL sparse matrix
* package.
*
* MATLAB calling syntax is:
*
* [L, D, Parent, flops] = ldl (A)
* [L, D, Parent, flops] = ldl (A, P)
* [x, flops] = ldl (A, [ ], b)
* [x, flops] = ldl (A, P, b)
*
* The factorization is L*D*L' = A or L*D*L' = A(P,P). A must be sparse,
* square, and real. L is lower triangular with unit diagonal, but the diagonal
* is not returned. D is diagonal sparse matrix. Let n = size (A,1). If P is
* not present or empty, the factorization is:
*
* (L + speye (n)) * D * (L + speye (n))' = A
*
* otherwise, the factorization is
*
* (L + speye (n)) * D * (L + speye (n))' = A(P,P)
*
* P is a permutation of 1:n, an output of AMD, SYMAMD, or SYMRCM, for example.
* Only the diagonal and upper triangular part of A or A(P,P) is accessed; the
* lower triangular part is ignored.
*
* The elimination tree is returned in the Parent array.
*
* In the x = ldl (A, P, b) usage, the LDL' factorization is not returned.
* Instead, the system A*x=b is solved for x, where b is a dense n-by-m matrix,
* using P as the fill-reducing ordering for the LDL' factorization of A(P,P).
* If P is not present or equal to [ ], it is assumed to be the identity
* permutation.
*
* If no zero entry on the diagonal of D is encountered, then the flops argument
* is the floating point count.
*
* If any entry on the diagonal of D is zero, then the LDL' factorization is
* terminated at that point. If there is no flops output argument, an error
* message is printed and no outputs are returned. Otherwise, flops is
* negative, d = -flops, and D (d,d) is the first zero entry on the diagonal of
* D. A partial factorization is returned. Let B = A if P is not present or
* empty, or B = A(P,P) otherwise. Then the factorization is
*
* LDL = (L + speye (n)) * D * (L + speye (n))'
* LDL (1:d, 1:d) = B (1:d,1:d)
*
* That is, the LDL' factorization of B (1:d,1:d) is in the first d rows and
* columns of L and D. The rest of L and D are zero.
*
* LDL Version 1.2, Copyright (c) 2005 by Timothy A Davis,
* University of Florida. All Rights Reserved. See README for the License.
*/
#include "ldl.h"
#include "mex.h"
#include "matrix.h"
/* ========================================================================== */
/* === LDL mexFunction ====================================================== */
/* ========================================================================== */
void mexFunction
(
int nargout,
mxArray *pargout[ ],
int nargin,
const mxArray *pargin[ ]
)
{
int i, n, *Pattern, *Flag, *Li, *Lp, *Ap, *Ai, *Lnz, *Parent, do_chol, nrhs,
lnz, do_solve, *P, *Pinv, nn, k, j, permute, *Dp, *Di, d, do_flops,
psrc, pdst, p2 ;
double *Y, *D, *Lx, *Ax, flops, *X, *B, *p ;
/* ---------------------------------------------------------------------- */
/* get inputs and allocate workspace */
/* ---------------------------------------------------------------------- */
do_chol = (nargin > 0) && (nargin <= 2) && (nargout <= 4) ;
do_solve = (nargin == 3) && (nargout <= 2) ;
if (!(do_chol || do_solve))
{
mexErrMsgTxt ("Usage:\n"
" [L, D, etree, flopcount] = ldl (A) ;\n"
" [L, D, etree, flopcount] = ldl (A, P) ;\n"
" [x, flopcount] = ldl (A, [ ], b) ;\n"
" [x, flopcount] = ldl (A, P, b) ;\n"
"The etree and flopcount arguments are optional.") ;
}
n = mxGetM (pargin [0]) ;
if (!mxIsSparse (pargin [0]) || n != mxGetN (pargin [0])
|| !mxIsDouble (pargin [0]) || mxIsComplex (pargin [0]))
{
mexErrMsgTxt ("ldl: A must be sparse, square, and real") ;
}
if (do_solve)
{
if (mxIsSparse (pargin [2]) || n != mxGetM (pargin [2])
|| !mxIsDouble (pargin [2]) || mxIsComplex (pargin [2]))
{
mexErrMsgTxt (
"ldl: b must be dense, real, and with proper dimension") ;
}
}
nn = (n == 0) ? 1 : n ;
/* get sparse matrix A */
Ap = mxGetJc (pargin [0]) ;
Ai = mxGetIr (pargin [0]) ;
Ax = mxGetPr (pargin [0]) ;
/* get fill-reducing ordering, if present */
permute = ((nargin > 1) && !mxIsEmpty (pargin [1])) ;
if (permute)
{
if (mxGetM (pargin [1]) * mxGetN (pargin [1]) != n ||
mxIsSparse (pargin [1]))
{
mexErrMsgTxt ("ldl: invalid input permutation\n") ;
}
P = (int *) mxMalloc (nn * sizeof (int)) ;
Pinv = (int *) mxMalloc (nn * sizeof (int)) ;
p = mxGetPr (pargin [1]) ;
for (k = 0 ; k < n ; k++)
{
P [k] = p [k] - 1 ; /* convert to 0-based */
}
}
else
{
P = (int *) NULL ;
Pinv = (int *) NULL ;
}
/* allocate first part of L */
Lp = (int *) mxMalloc ((n+1) * sizeof (int)) ;
Parent = (int *) mxMalloc (nn * sizeof (int)) ;
/* get workspace */
Y = (double *) mxMalloc (nn * sizeof (double)) ;
Flag = (int *) mxMalloc (nn * sizeof (int)) ;
Pattern = (int *) mxMalloc (nn * sizeof (int)) ;
Lnz = (int *) mxMalloc (nn * sizeof (int)) ;
/* make sure the input P is valid */
if (permute && !ldl_valid_perm (n, P, Flag))
{
mexErrMsgTxt ("ldl: invalid input permutation\n") ;
}
/* note that we assume that the input matrix is valid */
/* ---------------------------------------------------------------------- */
/* symbolic factorization to get Lp, Parent, Lnz, and optionally Pinv */
/* ---------------------------------------------------------------------- */
ldl_symbolic (n, Ap, Ai, Lp, Parent, Lnz, Flag, P, Pinv) ;
lnz = Lp [n] ;
/* ---------------------------------------------------------------------- */
/* create outputs */
/* ---------------------------------------------------------------------- */
if (do_chol)
{
/* create the output matrix L, using the Lp array from ldl_symbolic */
pargout [0] = mxCreateSparse (n, n, lnz+1, mxREAL) ;
mxFree (mxGetJc (pargout [0])) ;
mxSetJc (pargout [0], Lp) ; /* Lp is not mxFree'd */
Li = mxGetIr (pargout [0]) ;
Lx = mxGetPr (pargout [0]) ;
/* create sparse diagonal matrix D */
if (nargout > 1)
{
pargout [1] = mxCreateSparse (n, n, nn, mxREAL) ;
Dp = mxGetJc (pargout [1]) ;
Di = mxGetIr (pargout [1]) ;
for (j = 0 ; j < n ; j++)
{
Dp [j] = j ;
Di [j] = j ;
}
Dp [n] = n ;
D = mxGetPr (pargout [1]) ;
}
else
{
D = (double *) mxMalloc (nn * sizeof (double)) ;
}
/* return elimination tree (add 1 to change from 0-based to 1-based) */
if (nargout > 2)
{
pargout [2] = mxCreateDoubleMatrix (1, n, mxREAL) ;
p = mxGetPr (pargout [2]) ;
for (i = 0 ; i < n ; i++)
{
p [i] = Parent [i] + 1 ;
}
}
do_flops = (nargout == 4) ? (3) : (-1) ;
}
else
{
/* create L and D as temporary matrices */
Li = (int *) mxMalloc ((lnz+1) * sizeof (int)) ;
Lx = (double *) mxMalloc ((lnz+1) * sizeof (double)) ;
D = (double *) mxMalloc (nn * sizeof (double)) ;
/* create solution x */
nrhs = mxGetN (pargin [2]) ;
pargout [0] = mxCreateDoubleMatrix (n, nrhs, mxREAL) ;
X = mxGetPr (pargout [0]) ;
B = mxGetPr (pargin [2]) ;
do_flops = (nargout == 2) ? (1) : (-1) ;
}
if (do_flops >= 0)
{
/* find flop count for ldl_numeric */
flops = 0 ;
for (k = 0 ; k < n ; k++)
{
flops += ((double) Lnz [k]) * (Lnz [k] + 2) ;
}
if (do_solve)
{
/* add flop count for solve */
for (k = 0 ; k < n ; k++)
{
flops += 4 * ((double) Lnz [k]) + 1 ;
}
}
pargout [do_flops] = mxCreateDoubleMatrix (1, 1, mxREAL) ;
p = mxGetPr (pargout [do_flops]) ;
p [0] = flops ;
}
/* ---------------------------------------------------------------------- */
/* numeric factorization to get Li, Lx, and D */
/* ---------------------------------------------------------------------- */
d = ldl_numeric (n, Ap, Ai, Ax, Lp, Parent, Lnz, Li, Lx, D, Y, Flag,
Pattern, P, Pinv) ;
/* ---------------------------------------------------------------------- */
/* singular case : truncate the factorization */
/* ---------------------------------------------------------------------- */
if (d != n)
{
/* D [d] is zero: report error, or clean up */
if (do_chol && do_flops < 0)
{
mexErrMsgTxt ("ldl: zero pivot encountered\n") ;
}
else
{
/* L and D are incomplete, compact them */
if (do_chol)
{
for (k = d ; k < n ; k++)
{
Dp [k] = d ;
}
Dp [n] = d ;
}
for (k = d ; k < n ; k++)
{
D [k] = 0 ;
}
pdst = 0 ;
for (k = 0 ; k < d ; k++)
{
for (psrc = Lp [k] ; psrc < Lp [k] + Lnz [k] ; psrc++)
{
Li [pdst] = Li [psrc] ;
Lx [pdst] = Lx [psrc] ;
pdst++ ;
}
}
for (k = 0 ; k < d ; k++)
{
Lp [k+1] = Lp [k] + Lnz [k] ;
}
for (k = d ; k <= n ; k++)
{
Lp [k] = pdst ;
}
if (do_flops >= 0)
{
/* return -d instead of the flop count (convert to 1-based) */
p = mxGetPr (pargout [do_flops]) ;
p [0] = -(1+d) ;
}
}
}
/* ---------------------------------------------------------------------- */
/* solve Ax=b, if requested */
/* ---------------------------------------------------------------------- */
if (do_solve)
{
if (permute)
{
for (j = 0 ; j < nrhs ; j++)
{
ldl_perm (n, Y, B, P) ; /* y = Pb */
ldl_lsolve (n, Y, Lp, Li, Lx) ; /* y = L\y */
ldl_dsolve (n, Y, D) ; /* y = D\y */
ldl_ltsolve (n, Y, Lp, Li, Lx) ; /* y = L'\y */
ldl_permt (n, X, Y, P) ; /* x = P'y */
X += n ;
B += n ;
}
}
else
{
for (j = 0 ; j < nrhs ; j++)
{
for (k = 0 ; k < n ; k++) /* x = b */
{
X [k] = B [k] ;
}
ldl_lsolve (n, X, Lp, Li, Lx) ; /* x = L\x */
ldl_dsolve (n, X, D) ; /* x = D\x */
ldl_ltsolve (n, X, Lp, Li, Lx) ; /* x = L'\x */
X += n ;
B += n ;
}
}
/* free the matrix L */
mxFree (Lp) ;
mxFree (Li) ;
mxFree (Lx) ;
mxFree (D) ;
}
/* ---------------------------------------------------------------------- */
/* free workspace */
/* ---------------------------------------------------------------------- */
if (do_chol && nargout < 2)
{
mxFree (D) ;
}
if (permute)
{
mxFree (P) ;
mxFree (Pinv) ;
}
mxFree (Parent) ;
mxFree (Y) ;
mxFree (Flag) ;
mxFree (Pattern) ;
mxFree (Lnz) ;
}
|