1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
|
/******************************************************************************\
* Copyright (c) 2016, Robert van Engelen, Genivia Inc. All rights reserved. *
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions are met: *
* *
* (1) Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* (2) Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* (3) The name of the author may not be used to endorse or promote products *
* derived from this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO *
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; *
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, *
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR *
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF *
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
\******************************************************************************/
/**
@file pattern.h
@brief RE/flex regular expression pattern compiler
@author Robert van Engelen - engelen@genivia.com
@copyright (c) 2016-2020, Robert van Engelen, Genivia Inc. All rights reserved.
@copyright (c) BSD-3 License - see LICENSE.txt
*/
#ifndef REFLEX_PATTERN_H
#define REFLEX_PATTERN_H
#include <reflex/bits.h>
#include <reflex/debug.h>
#include <reflex/error.h>
#include <reflex/input.h>
#include <reflex/ranges.h>
#include <reflex/setop.h>
#include <cctype>
#include <cstring>
#include <iostream>
#include <string>
#include <list>
#include <map>
#include <set>
#include <vector>
#if (defined(__WIN32__) || defined(_WIN32) || defined(WIN32) || defined(_WIN64) || defined(__BORLANDC__)) && !defined(__CYGWIN__) && !defined(__MINGW32__) && !defined(__MINGW64__)
# pragma warning( disable : 4290 )
#endif
namespace reflex {
/// Pattern class holds a regex pattern and its compiled FSM opcode table or code for the reflex::Matcher engine.
class Pattern {
friend class Matcher; ///< permit access by the reflex::Matcher engine
friend class FuzzyMatcher; ///< permit access by the reflex::FuzzyMatcher engine
public:
typedef uint8_t Pred; ///< predict match bits
typedef uint16_t Hash; ///< hash value type, max value is Const::HASH
typedef uint32_t Index; ///< index into opcodes array Pattern::opc_ and subpattern indexing
typedef uint32_t Accept; ///< group capture index
typedef uint32_t Opcode; ///< 32 bit opcode word
typedef void (*FSM)(class Matcher&); ///< function pointer to FSM code
/// Common constants.
struct Const {
static const Index IMAX = 0xFFFFFFFF; ///< max index, also serves as a marker
static const Index GMAX = 0xFEFFFF; ///< max goto index
static const Accept AMAX = 0xFDFFFF; ///< max accept
static const Index LMAX = 0xFAFFFF; ///< max lookahead index
static const Index LONG = 0xFFFE; ///< LONG marker for 64 bit opcodes, must be HALT-1
static const Index HALT = 0xFFFF; ///< HALT marker for GOTO opcodes, must be 16 bit max
static const Hash HASH = 0x1000; ///< size of the predict match array
};
/// Construct an unset pattern.
Pattern()
:
opc_(NULL),
nop_(0),
fsm_(NULL)
{ }
/// Construct a pattern object given a regex string.
explicit Pattern(
const char *regex,
const char *options = NULL)
:
rex_(regex),
opc_(NULL),
fsm_(NULL)
{
init(options);
}
/// Construct a pattern object given a regex string.
Pattern(
const char *regex,
const std::string& options)
:
rex_(regex),
opc_(NULL),
fsm_(NULL)
{
init(options.c_str());
}
/// Construct a pattern object given a regex string.
explicit Pattern(
const std::string& regex,
const char *options = NULL)
:
rex_(regex),
opc_(NULL),
fsm_(NULL)
{
init(options);
}
/// Construct a pattern object given a regex string.
Pattern(
const std::string& regex,
const std::string& options)
:
rex_(regex),
opc_(NULL),
fsm_(NULL)
{
init(options.c_str());
}
/// Construct a pattern object given an opcode table.
explicit Pattern(
const Opcode *code,
const uint8_t *pred = NULL)
:
opc_(code),
nop_(0),
fsm_(NULL)
{
init(NULL, pred);
}
/// Construct a pattern object given a function pointer to FSM code.
explicit Pattern(
FSM fsm,
const uint8_t *pred = NULL)
:
opc_(NULL),
nop_(0),
fsm_(fsm)
{
init(NULL, pred);
}
/// Copy constructor.
Pattern(const Pattern& pattern) ///< pattern to copy
{
operator=(pattern);
}
/// Destructor, deletes internal code array when owned and allocated.
virtual ~Pattern()
{
clear();
}
/// Clear and delete pattern data.
void clear()
{
rex_.clear();
if (nop_ > 0 && opc_ != NULL)
delete[] opc_;
opc_ = NULL;
nop_ = 0;
fsm_ = NULL;
}
/// Assign a (new) pattern.
Pattern& assign(
const char *regex,
const char *options = NULL)
{
clear();
rex_ = regex;
init(options);
return *this;
}
/// Assign a (new) pattern.
Pattern& assign(
const char *regex,
const std::string& options)
{
return assign(regex, options.c_str());
}
/// Assign a (new) pattern.
Pattern& assign(
const std::string& regex,
const char *options = NULL)
{
return assign(regex.c_str(), options);
}
/// Assign a (new) pattern.
Pattern& assign(
const std::string& regex,
const std::string& options)
{
return assign(regex.c_str(), options.c_str());
}
/// Assign a (new) pattern.
Pattern& assign(
const Opcode *code,
const uint8_t *pred = NULL)
{
clear();
opc_ = code;
init(NULL, pred);
return *this;
}
/// Assign a (new) pattern.
Pattern& assign(
FSM fsm,
const uint8_t *pred = NULL)
{
clear();
fsm_ = fsm;
init(NULL, pred);
return *this;
}
/// Assign a (new) pattern.
Pattern& operator=(const Pattern& pattern)
{
clear();
opt_ = pattern.opt_;
rex_ = pattern.rex_;
end_ = pattern.end_;
acc_ = pattern.acc_;
vno_ = pattern.vno_;
eno_ = pattern.eno_;
pms_ = pattern.pms_;
vms_ = pattern.vms_;
ems_ = pattern.ems_;
wms_ = pattern.wms_;
if (pattern.nop_ > 0 && pattern.opc_ != NULL)
{
nop_ = pattern.nop_;
Opcode *code = new Opcode[nop_];
for (size_t i = 0; i < nop_; ++i)
code[i] = pattern.opc_[i];
opc_ = code;
}
else
{
fsm_ = pattern.fsm_;
}
return *this;
}
/// Assign a (new) pattern.
Pattern& operator=(const char *regex)
{
return assign(regex);
}
/// Assign a (new) pattern.
Pattern& operator=(const std::string& regex)
{
return assign(regex);
}
/// Assign a (new) pattern.
Pattern& operator=(const Opcode *code)
{
return assign(code);
}
/// Assign a (new) pattern.
Pattern& operator=(FSM fsm)
{
return assign(fsm);
}
/// Get the number of subpatterns of this pattern object.
Accept size() const
/// @returns number of subpatterns
{
return static_cast<Accept>(end_.size());
}
/// Return true if this pattern is not assigned.
bool empty() const
/// @return true if this pattern is not assigned
{
return opc_ == NULL && fsm_ == NULL;
}
/// Get subpattern regex of this pattern object or the whole regex with index 0.
const std::string operator[](Accept choice) const
/// @returns subpattern string or "" when not set
;
/// Check if subpattern is reachable by a match.
bool reachable(Accept choice) const
/// @returns true if subpattern is reachable
{
return choice >= 1 && choice <= size() && acc_.at(choice - 1);
}
/// Get the number of finite state machine nodes (vertices).
size_t nodes() const
/// @returns number of nodes or 0 when no finite state machine was constructed by this pattern
{
return nop_ > 0 ? vno_ : 0;
}
/// Get the number of finite state machine edges (transitions on input characters).
size_t edges() const
/// @returns number of edges or 0 when no finite state machine was constructed by this pattern
{
return nop_ > 0 ? eno_ : 0;
}
/// Get the code size in number of words.
size_t words() const
/// @returns number of words or 0 when no code was generated by this pattern
{
return nop_;
}
/// Get elapsed regex parsing and analysis time.
float parse_time() const
{
return pms_;
}
/// Get elapsed DFA vertices construction time.
float nodes_time() const
{
return vms_;
}
/// Get elapsed DFA edges construction time.
float edges_time() const
{
return ems_;
}
/// Get elapsed code words assembly time.
float words_time() const
{
return wms_;
}
/// Returns true when match is predicted, based on s[0..3..e-1] (e >= s + 4).
static inline bool predict_match(const Pred pmh[], const char *s, size_t n)
{
Hash h = static_cast<uint8_t>(*s);
if (pmh[h] & 1)
return false;
h = hash(h, static_cast<uint8_t>(*++s));
if (pmh[h] & 2)
return false;
h = hash(h, static_cast<uint8_t>(*++s));
if (pmh[h] & 4)
return false;
h = hash(h, static_cast<uint8_t>(*++s));
if (pmh[h] & 8)
return false;
Pred m = 16;
const char *e = s + n - 3;
while (++s < e)
{
h = hash(h, static_cast<uint8_t>(*s));
if (pmh[h] & m)
return false;
m <<= 1;
}
return true;
}
/// Returns zero when match is predicted or nonzero shift value, based on s[0..3].
static inline size_t predict_match(const Pred pma[], const char *s)
{
uint8_t b0 = s[0];
uint8_t b1 = s[1];
uint8_t b2 = s[2];
uint8_t b3 = s[3];
Hash h1 = hash(b0, b1);
Hash h2 = hash(h1, b2);
Hash h3 = hash(h2, b3);
Pred a0 = pma[b0];
Pred a1 = pma[h1];
Pred a2 = pma[h2];
Pred a3 = pma[h3];
Pred p = (a0 & 0xc0) | (a1 & 0x30) | (a2 & 0x0c) | (a3 & 0x03);
Pred m = ((((((p >> 2) | p) >> 2) | p) >> 1) | p);
if (m != 0xff)
return 0;
if ((pma[b1] & 0xc0) != 0xc0)
return 1;
if ((pma[b2] & 0xc0) != 0xc0)
return 2;
if ((pma[b3] & 0xc0) != 0xc0)
return 3;
return 4;
}
protected:
/// Throw an error.
virtual void error(
regex_error_type code, ///< error code
size_t pos = 0) ///< optional location of the error in regex string Pattern::rex_
const;
private:
typedef uint16_t Char; // 8 bit char and meta chars up to META_MAX-1
typedef uint8_t Lazy;
typedef uint16_t Iter;
typedef uint16_t Lookahead;
typedef std::set<Lookahead> Lookaheads;
typedef uint32_t Location;
typedef ORanges<Location> Locations;
typedef std::map<int,Locations> Map;
/// Set of chars and meta chars
struct Chars {
Chars() { clear(); }
Chars(const Chars& c) { b[0] = c.b[0]; b[1] = c.b[1]; b[2] = c.b[2]; b[3] = c.b[3]; b[4] = c.b[4]; }
Chars(const uint64_t c[5]) { b[0] = c[0]; b[1] = c[1]; b[2] = c[2]; b[3] = c[3]; b[4] = c[4]; }
void clear() { b[0] = b[1] = b[2] = b[3] = b[4] = 0ULL; }
bool any() const { return b[0] || b[1] || b[2] || b[3] || b[4]; }
bool intersects(const Chars& c) const { return (b[0] & c.b[0]) || (b[1] & c.b[1]) || (b[2] & c.b[2]) || (b[3] & c.b[3]) || (b[4] & c.b[4]); }
bool contains(const Chars& c) const { return !(c - *this).any(); }
bool contains(Char c) const { return b[c >> 6] & (1ULL << (c & 0x3F)); }
Chars& insert(Char c) { b[c >> 6] |= 1ULL << (c & 0x3F); return *this; }
Chars& insert(Char lo, Char hi) { while (lo <= hi) insert(lo++); return *this; }
Chars& flip() { b[0] = ~b[0]; b[1] = ~b[1]; b[2] = ~b[2]; b[3] = ~b[3]; b[4] = ~b[4]; return *this; }
Chars& flip256() { b[0] = ~b[0]; b[1] = ~b[1]; b[2] = ~b[2]; b[3] = ~b[3]; return *this; }
Chars& swap(Chars& c) { Chars t = c; c = *this; return *this = t; }
Chars& operator+=(const Chars& c) { return operator|=(c); }
Chars& operator-=(const Chars& c) { b[0] &=~c.b[0]; b[1] &=~c.b[1]; b[2] &=~c.b[2]; b[3] &=~c.b[3]; b[4] &=~c.b[4]; return *this; }
Chars& operator|=(const Chars& c) { b[0] |= c.b[0]; b[1] |= c.b[1]; b[2] |= c.b[2]; b[3] |= c.b[3]; b[4] |= c.b[4]; return *this; }
Chars& operator&=(const Chars& c) { b[0] &= c.b[0]; b[1] &= c.b[1]; b[2] &= c.b[2]; b[3] &= c.b[3]; b[4] &= c.b[4]; return *this; }
Chars& operator^=(const Chars& c) { b[0] ^= c.b[0]; b[1] ^= c.b[1]; b[2] ^= c.b[2]; b[3] ^= c.b[3]; b[4] ^= c.b[4]; return *this; }
Chars operator+(const Chars& c) const { return Chars(*this) += c; }
Chars operator-(const Chars& c) const { return Chars(*this) -= c; }
Chars operator|(const Chars& c) const { return Chars(*this) |= c; }
Chars operator&(const Chars& c) const { return Chars(*this) &= c; }
Chars operator^(const Chars& c) const { return Chars(*this) ^= c; }
Chars operator~() const { return Chars(*this).flip(); }
operator bool() const { return any(); }
Chars& operator=(const Chars& c) { b[0] = c.b[0]; b[1] = c.b[1]; b[2] = c.b[2]; b[3] = c.b[3]; b[4] = c.b[4]; return *this; }
bool operator==(const Chars& c) const { return b[0] == c.b[0] && b[1] == c.b[1] && b[2] == c.b[2] && b[3] == c.b[3] && b[4] == c.b[4]; }
bool operator<(const Chars& c) const { return b[0] < c.b[0] || (b[0] == c.b[0] && (b[1] < c.b[1] || (b[1] == c.b[1] && (b[2] < c.b[2] || (b[2] == c.b[2] && (b[3] < c.b[3] || (b[3] == c.b[3] && b[4] < c.b[4]))))))); }
bool operator>(const Chars& c) const { return c < *this; }
bool operator<=(const Chars& c) const { return !(c < *this); }
bool operator>=(const Chars& c) const { return !(*this < c); }
Char lo() const { for (Char i = 0; i < 5; ++i) if (b[i]) for (Char j = 0; j < 64; ++j) if (b[i] & (1ULL << j)) return (i << 6) + j; return 0; }
Char hi() const { for (Char i = 0; i < 5; ++i) if (b[4-i]) for (Char j = 0; j < 64; ++j) if (b[4-i] & (1ULL << (63-j))) return ((4-i) << 6) + (63-j); return 0; }
uint64_t b[5]; ///< 256 bits to store a set of 8-bit chars + extra bits for meta
};
/// Finite state machine construction position information.
struct Position {
typedef uint64_t value_type;
static const Iter MAXITER = 0xFFFF;
static const Location MAXLOC = 0xFFFFFFFFUL;
static const value_type NPOS = 0xFFFFFFFFFFFFFFFFULL;
static const value_type RES1 = 1ULL << 48; ///< reserved
static const value_type RES2 = 1ULL << 49; ///< reserved
static const value_type RES3 = 1ULL << 50; ///< reserved
static const value_type NEGATE = 1ULL << 51; ///< marks negative patterns
static const value_type TICKED = 1ULL << 52; ///< marks lookahead ending ) in (?=X)
static const value_type GREEDY = 1ULL << 53; ///< force greedy quants
static const value_type ANCHOR = 1ULL << 54; ///< marks begin of word (\b,\<,\>) and buffer (\A,^) anchors
static const value_type ACCEPT = 1ULL << 55; ///< accept, not a regex position
Position() : k(NPOS) { }
Position(value_type k) : k(k) { }
Position(const Position& p) : k(p.k) { }
Position& operator=(const Position& p) { k = p.k; return *this; }
operator value_type() const { return k; }
Position iter(Iter i) const { return Position(k + (static_cast<value_type>(i) << 32)); }
Position negate(bool b) const { return b ? Position(k | NEGATE) : Position(k & ~NEGATE); }
Position ticked(bool b) const { return b ? Position(k | TICKED) : Position(k & ~TICKED); }
Position greedy(bool b) const { return b ? Position(k | GREEDY) : Position(k & ~GREEDY); }
Position anchor(bool b) const { return b ? Position(k | ANCHOR) : Position(k & ~ANCHOR); }
Position accept(bool b) const { return b ? Position(k | ACCEPT) : Position(k & ~ACCEPT); }
Position lazy(Lazy l) const { return Position((k & 0x00FFFFFFFFFFFFFFULL) | static_cast<value_type>(l) << 56); }
Position pos() const { return Position(k & 0x0000FFFFFFFFFFFFULL); }
Location loc() const { return static_cast<Location>(k); }
Accept accepts() const { return static_cast<Accept>(k); }
Iter iter() const { return static_cast<Index>((k >> 32) & 0xFFFF); }
bool negate() const { return (k & NEGATE) != 0; }
bool ticked() const { return (k & TICKED) != 0; }
bool greedy() const { return (k & GREEDY) != 0; }
bool anchor() const { return (k & ANCHOR) != 0; }
bool accept() const { return (k & ACCEPT) != 0; }
Lazy lazy() const { return static_cast<Lazy>(k >> 56); }
value_type k;
};
typedef std::set<Lazy> Lazyset;
typedef std::set<Position> Positions;
typedef std::map<Position,Positions> Follow;
typedef std::pair<Chars,Positions> Move;
typedef std::list<Move> Moves;
/// Tree DFA constructed from string patterns.
struct Tree
{
struct Node {
Node()
:
accept(0)
{
for (int i = 0; i < 256; ++i)
edge[i] = NULL;
}
Node *edge[256]; ///< 256 edges, one per 8-bit char
Accept accept; ///< nonzero if final state, the index of an accepted/captured subpattern
};
typedef std::list<Node*> List;
static const uint16_t ALLOC = 64; ///< allocate 64 nodes at a time, to improve performance
Tree()
:
tree(NULL),
next(ALLOC)
{ }
~Tree()
{
clear();
}
/// delete the tree DFA.
void clear()
{
for (List::iterator i = list.begin(); i != list.end(); ++i)
delete[] *i;
list.clear();
}
/// return the root of the tree.
Node *root()
{
return tree != NULL ? tree : (tree = leaf());
}
/// create an edge from a tree node to a target tree node, return the target tree node.
Node *edge(Node *node, Char c)
{
return node->edge[c] != NULL ? node->edge[c] : (node->edge[c] = leaf());
}
/// create a new leaf node.
Node *leaf()
{
if (next >= ALLOC)
{
list.push_back(new Node[ALLOC]);
next = 0;
}
return &list.back()[next++];
}
Node *tree; ///< root of the tree or NULL
List list; ///< block allocation list
uint16_t next; ///< block allocation, next available slot in last block
};
/// DFA created by subset construction from regex patterns.
struct DFA {
struct State : Positions {
typedef std::map<Char,std::pair<Char,State*> > Edges;
State()
:
next(NULL),
left(NULL),
right(NULL),
tnode(NULL),
first(0),
index(0),
accept(0),
redo(false)
{ }
State *assign(Tree::Node *node)
{
tnode = node;
return this;
}
State *assign(Tree::Node *node, Positions& pos)
{
tnode = node;
this->swap(pos);
return this;
}
State *next; ///< points to next state in the list of states allocated depth-first by subset construction
State *left; ///< left pointer for O(log N) node insertion in the hash table overflow tree
State *right; ///< right pointer for O(log N) node insertion in the hash table overflow tree
Tree::Node *tnode; ///< the corresponding tree DFA node, when applicable
Edges edges; ///< state transitions
Index first; ///< index of this state in the opcode table, determined by the first assembly pass
Index index; ///< index of this state in the opcode table
Accept accept; ///< nonzero if final state, the index of an accepted/captured subpattern
Lookaheads heads; ///< lookahead head set
Lookaheads tails; ///< lookahead tail set
bool redo; ///< true if this is a final state of a negative pattern
};
typedef std::list<State*> List;
static const uint16_t ALLOC = 256; ///< allocate 256 states at a time, to improve performance.
DFA()
:
next(ALLOC)
{ }
~DFA()
{
clear();
}
/// delete DFA
void clear()
{
for (List::iterator i = list.begin(); i != list.end(); ++i)
delete[] *i;
list.clear();
}
/// new DFA state with optional tree DFA node.
State *state(Tree::Node *node)
{
if (next >= ALLOC)
{
list.push_back(new State[ALLOC]);
next = 0;
}
return list.back()[next++].assign(node);
}
/// new DFA state with optional tree DFA node and positions, destroys pos.
State *state(Tree::Node *node, Positions& pos)
{
if (next >= ALLOC)
{
list.push_back(new State[ALLOC]);
next = 0;
}
return list.back()[next++].assign(node, pos);
}
List list; ///< block allocation list
uint16_t next; ///< block allocation, next available slot in last block
};
/// Global modifier modes, syntax flags, and compiler options.
struct Option {
Option() : b(), e(), f(), i(), m(), n(), o(), p(), q(), r(), s(), w(), x(), z() { }
bool b; ///< disable escapes in bracket lists
Char e; ///< escape character, or > 255 for none, '\\' default
std::vector<std::string> f; ///< output to files
bool i; ///< case insensitive mode, also `(?i:X)`
bool m; ///< multi-line mode, also `(?m:X)`
std::string n; ///< pattern name (for use in generated code)
bool o; ///< generate optimized FSM code for option f
bool p; ///< with option f also output predict match array for fast search with find()
bool q; ///< enable "X" quotation of verbatim content, also `(?q:X)`
bool r; ///< raise syntax errors
bool s; ///< single-line mode (dotall mode), also `(?s:X)`
bool w; ///< write error message to stderr
bool x; ///< free-spacing mode, also `(?x:X)`
std::string z; ///< namespace (NAME1.NAME2.NAME3)
};
/// Meta characters.
enum Meta {
META_MIN = 0x100,
META_NWB = 0x101, ///< non-word boundary at begin `\Bx`
META_NWE = 0x102, ///< non-word boundary at end `x\B`
META_BWB = 0x103, ///< begin of word at begin `\<x` where \bx=(\<|\>)x
META_EWB = 0x104, ///< end of word at begin `\>x`
META_BWE = 0x105, ///< begin of word at end `x\<` where x\b=x(\<|\>)
META_EWE = 0x106, ///< end of word at end `x\>`
META_BOL = 0x107, ///< begin of line `^`
META_EOL = 0x108, ///< end of line `$`
META_BOB = 0x109, ///< begin of buffer `\A`
META_EOB = 0x10A, ///< end of buffer `\Z`
META_UND = 0x10B, ///< undent boundary `\k`
META_IND = 0x10C, ///< indent boundary `\i` (must be one but the largest META code)
META_DED = 0x10D, ///< dedent boundary `\j` (must be the largest META code)
META_MAX ///< max meta characters
};
/// Initialize the pattern at construction.
void init(
const char *options,
const uint8_t *pred = NULL);
void init_options(const char *options);
void parse(
Positions& startpos,
Follow& followpos,
Map& modifiers,
Map& lookahead);
void parse1(
bool begin,
Location& loc,
Positions& firstpos,
Positions& lastpos,
bool& nullable,
Follow& followpos,
Lazy& lazyidx,
Lazyset& lazyset,
Map& modifiers,
Locations& lookahead,
Iter& iter);
void parse2(
bool begin,
Location& loc,
Positions& firstpos,
Positions& lastpos,
bool& nullable,
Follow& followpos,
Lazy& lazyidx,
Lazyset& lazyset,
Map& modifiers,
Locations& lookahead,
Iter& iter);
void parse3(
bool begin,
Location& loc,
Positions& firstpos,
Positions& lastpos,
bool& nullable,
Follow& followpos,
Lazy& lazyidx,
Lazyset& lazyset,
Map& modifiers,
Locations& lookahead,
Iter& iter);
void parse4(
bool begin,
Location& loc,
Positions& firstpos,
Positions& lastpos,
bool& nullable,
Follow& followpos,
Lazy& lazyidx,
Lazyset& lazyset,
Map& modifiers,
Locations& lookahead,
Iter& iter);
Char parse_esc(
Location& loc,
Chars *chars = NULL) const;
void compile(
DFA::State *start,
Follow& followpos,
const Map& modifiers,
const Map& lookahead);
void lazy(
const Lazyset& lazyset,
Positions& pos) const;
void lazy(
const Lazyset& lazyset,
const Positions& pos,
Positions& pos1) const;
void greedy(Positions& pos) const;
void trim_anchors(Positions& follow, const Position p) const;
void trim_lazy(Positions *pos) const;
void compile_transition(
DFA::State *state,
Follow& followpos,
const Map& modifiers,
const Map& lookahead,
Moves& moves) const;
void transition(
Moves& moves,
Chars& chars,
const Positions& follow) const;
void compile_list(
Location loc,
Chars& chars,
const Map& modifiers) const;
void posix(
size_t index,
Chars& chars) const;
void flip(Chars& chars) const;
void assemble(DFA::State *start);
void compact_dfa(DFA::State *start);
void encode_dfa(DFA::State *start);
void gencode_dfa(const DFA::State *start) const;
void check_dfa_closure(
const DFA::State *state,
int nest,
bool& peek,
bool& prev) const;
void gencode_dfa_closure(
FILE *fd,
const DFA::State *start,
int nest,
bool peek) const;
void export_dfa(const DFA::State *start) const;
void export_code() const;
void predict_match_dfa(DFA::State *start);
void gen_predict_match(DFA::State *state);
void gen_predict_match_transitions(DFA::State *state, std::map<DFA::State*,ORanges<Hash> >& states);
void gen_predict_match_transitions(size_t level, DFA::State *state, ORanges<Hash>& labels, std::map<DFA::State*,ORanges<Hash> >& states);
void write_predictor(FILE *fd) const;
void write_namespace_open(FILE* fd) const;
void write_namespace_close(FILE* fd) const;
size_t find_at(
Location loc,
char c) const
{
return rex_.find_first_of(c, loc);
}
Char at(Location k) const
{
return static_cast<unsigned char>(rex_[k]);
}
bool eq_at(
Location loc,
const char *s) const
{
return rex_.compare(loc, strlen(s), s) == 0;
}
Char escape_at(Location loc) const
{
if (at(loc) == opt_.e)
return at(loc + 1);
return '\0';
}
Char escapes_at(
Location loc,
const char *escapes) const
{
if (at(loc) == opt_.e && std::strchr(escapes, at(loc + 1)))
return at(loc + 1);
return '\0';
}
static inline bool is_modified(
Char mode,
const Map& modifiers,
Location loc)
{
Map::const_iterator i = modifiers.find(mode);
return i != modifiers.end() && i->second.find(loc) != i->second.end();
}
static inline void update_modified(
Char mode,
Map& modifiers,
Location from,
Location to)
{
// mode modifiers i, m, s (enabled) I, M, S (disabled)
if (modifiers.find(reversecase(mode)) != modifiers.end())
{
Locations modified(from, to);
modified -= modifiers[reversecase(mode)];
modifiers[mode] += modified;
}
else
{
modifiers[mode].insert(from, to);
}
}
static inline uint16_t hash_pos(const Positions *pos)
{
uint16_t h = 0;
for (Positions::const_iterator i = pos->begin(); i != pos->end(); ++i)
h += static_cast<uint16_t>(*i ^ (*i >> 24)); // (Position(*i).iter() << 4) unique hash for up to 16 chars iterated (abc...p){iter}
return h;
}
static inline bool valid_goto_index(Index index)
{
return index <= Const::GMAX;
}
static inline bool valid_take_index(Index index)
{
return index <= Const::AMAX;
}
static inline bool valid_lookahead_index(Index index)
{
return index <= Const::LMAX;
}
static inline bool is_meta(Char c)
{
return c > META_MIN;
}
static inline Opcode opcode_long(Index index)
{
return 0xFF000000 | (index & 0xFFFFFF); // index <= Const::GMAX (0xFEFFFF max)
}
static inline Opcode opcode_take(Index index)
{
return 0xFE000000 | (index & 0xFFFFFF); // index <= Const::AMAX (0xFDFFFF max)
}
static inline Opcode opcode_redo()
{
return 0xFD000000;
}
static inline Opcode opcode_tail(Index index)
{
return 0xFC000000 | (index & 0xFFFFFF); // index <= Const::LMAX (0xFAFFFF max)
}
static inline Opcode opcode_head(Index index)
{
return 0xFB000000 | (index & 0xFFFFFF); // index <= Const::LMAX (0xFAFFFF max)
}
static inline Opcode opcode_goto(
Char lo,
Char hi,
Index index)
{
return is_meta(lo) ? (static_cast<Opcode>(lo) << 24) | index : (static_cast<Opcode>(lo) << 24) | (hi << 16) | index;
}
static inline Opcode opcode_halt()
{
return 0x00FFFFFF;
}
static inline bool is_opcode_long(Opcode opcode)
{
return (opcode & 0xFF000000) == 0xFF000000;
}
static inline bool is_opcode_take(Opcode opcode)
{
return (opcode & 0xFE000000) == 0xFE000000;
}
static inline bool is_opcode_redo(Opcode opcode)
{
return opcode == 0xFD000000;
}
static inline bool is_opcode_tail(Opcode opcode)
{
return (opcode & 0xFF000000) == 0xFC000000;
}
static inline bool is_opcode_head(Opcode opcode)
{
return (opcode & 0xFF000000) == 0xFB000000;
}
static inline bool is_opcode_halt(Opcode opcode)
{
return opcode == 0x00FFFFFF;
}
static inline bool is_opcode_goto(Opcode opcode)
{
return (opcode << 8) >= (opcode & 0xFF000000);
}
static inline bool is_opcode_meta(Opcode opcode)
{
return (opcode & 0x00FF0000) == 0x00000000 && (opcode >> 24) > 0;
}
static inline bool is_opcode_goto(
Opcode opcode,
unsigned char c)
{
return c >= (opcode >> 24) && c <= ((opcode >> 16) & 0xFF);
}
static inline Char meta_of(Opcode opcode)
{
return META_MIN + (opcode >> 24);
}
static inline Char lo_of(Opcode opcode)
{
return is_opcode_meta(opcode) ? meta_of(opcode) : opcode >> 24;
}
static inline Char hi_of(Opcode opcode)
{
return is_opcode_meta(opcode) ? meta_of(opcode) : (opcode >> 16) & 0xFF;
}
static inline Index index_of(Opcode opcode)
{
return opcode & 0xFFFF;
}
static inline Index long_index_of(Opcode opcode)
{
return opcode & 0xFFFFFF;
}
static inline Lookahead lookahead_of(Opcode opcode)
{
return opcode & 0xFFFF;
}
static inline Char lowercase(Char c)
{
return static_cast<unsigned char>(c | 0x20);
}
static inline Char uppercase(Char c)
{
return static_cast<unsigned char>(c & ~0x20);
}
static inline Char reversecase(Char c)
{
return static_cast<unsigned char>(c ^ 0x20);
}
static inline Hash hash(Hash h, uint8_t b)
{
return ((h << 3) ^ b) & (Const::HASH - 1);
}
static inline Hash hash(Hash h)
{
return h & ((Const::HASH - 1) >> 3);
}
Option opt_; ///< pattern compiler options
Tree tfa_; ///< tree DFA constructed from strings (regex uses firstpos/lastpos/followpos)
DFA dfa_; ///< DFA constructed from regex with subset construction using firstpos/lastpos/followpos
std::string rex_; ///< regular expression string
std::vector<Location> end_; ///< entries point to the subpattern's ending '|' or '\0'
std::vector<bool> acc_; ///< true if subpattern n is accepting (state is reachable)
size_t vno_; ///< number of finite state machine vertices |V|
size_t eno_; ///< number of finite state machine edges |E|
const Opcode *opc_; ///< points to the opcode table
Index nop_; ///< number of opcodes generated
FSM fsm_; ///< function pointer to FSM code
size_t len_; ///< prefix length of pre_[], less or equal to 255
size_t min_; ///< patterns after the prefix are at least this long but no more than 8
char pre_[256]; ///< pattern prefix, shorter or equal to 255 bytes
Pred bit_[256]; ///< bitap array
Pred pmh_[Const::HASH]; ///< predict-match hash array
Pred pma_[Const::HASH]; ///< predict-match array
float pms_; ///< ms elapsed time to parse regex
float vms_; ///< ms elapsed time to compile DFA vertices
float ems_; ///< ms elapsed time to compile DFA edges
float wms_; ///< ms elapsed time to assemble code words
bool one_; ///< true if matching one string in pre_[] without meta/anchors
};
} // namespace reflex
#endif
|