1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
/******************************************************************************\
* Copyright (c) 2016, Robert van Engelen, Genivia Inc. All rights reserved. *
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions are met: *
* *
* (1) Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* (2) Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* (3) The name of the author may not be used to endorse or promote products *
* derived from this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO *
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; *
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, *
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR *
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF *
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
\******************************************************************************/
/**
@file bits.h
@brief RE/flex operations on dynamic bit vectors
@author Robert van Engelen - engelen@genivia.com
@copyright (c) 2016-2020, Robert van Engelen, Genivia Inc. All rights reserved.
@copyright (c) BSD-3 License - see LICENSE.txt
*/
#ifndef REFLEX_BITS_H
#define REFLEX_BITS_H
#include <cstring>
#if defined(__WIN32__) || defined(_WIN32) || defined(WIN32) || defined(_WIN64) || defined(__BORLANDC__)
namespace reflex {
typedef unsigned __int8 uint8_t;
typedef unsigned __int16 uint16_t;
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
}
#elif !defined(CONFIG_H)
# include <stdint.h>
#endif
namespace reflex {
/// RE/flex Bits class for dynamic bit vectors.
/**
Dynamic bit vectors are stored in Bits objects, which can be manipulated
with the usual bit-operations (`|` (bitor), `&` (bitand), `^` (bitxor)).
Supports comparison relations on bit vectors, check if all bits set, check if
any bits are set, flip bits, shift bits left or right, count bits, check if a
bit vectors intersects another, check if a bit vector contains another.
find_first bit, find_next bit.
Example:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
reflex::Bits digit('0', '9'); // bits '0' (48th bit) to '9' (57th bit)
reflex::Bits upper('A', 'Z'); // bits 'A' (65th bit) to 'Z' (92th bit)
reflex::Bits lower('a', 'z'); // bits 'a' (97th bit) to 'z' (122th bit)
if (upper.intersects(lower) == false)
std::cout << "upper and lower are disjoint\n";
reflex::Bits alnum = digit | upper | lower;
if (alnum.contains(digit) == true)
std::cout << "digit is a subset of alnum\n";
if (alnum['_'] == false)
std::cout << "_ is not in alnum\n";
alnum['_'] = true;
if (alnum['_'] == true)
std::cout << "_ is in updated alnum\n";
std::cout << alnum.count() << " bits in alnum\n";
for (size_t i = alnum.find_first(); i != reflex::Bits::npos; i = alnum.find_next(i))
std::cout << (char)i;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Output:
upper and lower are disjoint
digit is a subset of alnum
_ is not in alnum
_ is in updated alnum
63 bits in alnum
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
*/
class Bits {
public:
static const size_t npos = static_cast<size_t>(-1); ///< npos returned by find_first() and find_next()
/// References a single bit, returned by operator[].
struct Bitref {
Bitref(
size_t n, ///< n'th bit
uint64_t *p) ///< in this word
:
m(1ULL << n),
p(p)
{ }
uint64_t m; ///< mask m = 2^n
uint64_t *p; ///< in this word
/// Returns bit value.
operator bool() const
/// @returns bit value true or false.
{
return (*p & m) != 0;
}
/// Assign bit value.
const Bitref& operator=(bool b) ///< bit to assign
/// @returns result value true or false.
const
{
if (b)
*p |= m;
else
*p &= ~m;
return *this;
}
/// Bit-or bit value.
bool operator|=(bool b) ///< bit-or with this bit
/// @returns result value true or false.
const
{
if (b)
*p |= m;
return (*p & m) != 0;
}
/// Bit-and bit value.
bool operator&=(bool b) ///< bit-and with this bit
/// @returns result value true or false.
const
{
if (!b)
*p &= ~m;
return (*p & m) != 0;
}
/// Bit-xor bit value.
bool operator^=(bool b) ///< bit-xor with this bit
/// @returns result value true or false.
const
{
if (b)
*p ^= m;
return (*p & m) != 0;
}
};
/// Construct an empty bit vector.
Bits()
:
len_(0),
vec_(NULL)
{ }
/// Copy constructor
Bits(const Bits& bits) ///< bits to copy
{
operator=(bits);
}
/// Construct a bit vector and set n'th bit.
Bits(size_t n) ///< n'th bit to set
:
len_(0),
vec_(NULL)
{
insert(n);
}
/// Construct a bit vector and set a range of bits n1'th to n2'th.
Bits(
size_t n1, ///< first bit to set
size_t n2) ///< last bit to set
:
len_(0),
vec_(NULL)
{
insert(n1, n2);
}
/// Destroy bits.
~Bits()
{
if (vec_)
delete[] vec_;
}
/// Assign bits.
Bits& operator=(const Bits& bits) ///< bits to copy
/// @returns reference to this object.
{
len_ = bits.len_;
if (len_)
std::memcpy(vec_ = new uint64_t[len_], bits.vec_, len_ << 3);
else
vec_ = NULL;
return *this;
}
/// Reference n'th bit in the bit vector to assign a value to that bit.
Bitref operator[](size_t n) ///< n'th bit
/// @returns bit reference to assign.
{
alloc((n >> 6) + 1);
return Bitref(n & 0x3F, &vec_[n >> 6]);
}
/// Returns n'th bit.
bool operator[](size_t n) ///< n'th bit to return
/// @returns true if n'th bit is set, false otherwise.
const
{
return n >> 6 < len_ && (vec_[n >> 6] & 1ULL << (n & 0x3F)) != 0;
}
/// Insert and set a bit in the bit vector.
Bits& insert(size_t n) ///< n'th bit to set
/// @returns reference to this object.
{
alloc((n >> 6) + 1);
vec_[n >> 6] |= 1ULL << (n & 0x3F);
return *this;
}
/// Erase a bit in the bit vector.
Bits& erase(size_t n) ///< n'th bit to erase
/// @returns reference to this object.
{
if (n >> 6 < len_)
vec_[n >> 6] &= ~(1ULL << (n & 0x3F));
return *this;
}
/// Flips a bit in the bit vector.
Bits& flip(size_t n) ///< n'th bit to flip
/// @returns reference to this object.
{
alloc((n >> 6) + 1);
vec_[n >> 6] ^= 1ULL << (n & 0x3F);
return *this;
}
/// Insert and set a range of bits in the bit vector.
Bits& insert(
size_t n1, ///< first bit to set
size_t n2) ///< last bit to set
/// @returns reference to this object.
{
alloc((n2 >> 6) + 1);
for (size_t i = n1; i <= n2; ++i)
vec_[i >> 6] |= 1ULL << (i & 0x3F);
return *this;
}
/// Erase a range of bits in the bit vector.
Bits& erase(
size_t n1, ///< first bit to erase
size_t n2) ///< last bit to erase
/// @returns reference to this object.
{
if (n1 >> 6 < len_)
{
if (n2 >> 6 >= len_)
n2 = (len_ - 1) << 6;
for (size_t i = n1; i <= n2; ++i)
vec_[i >> 6] &= ~(1ULL << (i & 0x3F));
}
return *this;
}
/// Flip a range of bits in the bit vector.
Bits& flip(
size_t n1, ///< first bit to flip
size_t n2) ///< last bit to flip
/// @returns reference to this object.
{
alloc((n2 >> 6) + 1);
for (size_t i = n1; i <= n2; ++i)
vec_[i >> 6] ^= 1ULL << (i & 0x3F);
return *this;
}
/// Bit-shift left by one.
Bits& lshift()
{
if (len_ > 0)
{
uint64_t lo = 0;
for (size_t i = 0; i < len_; ++i)
{
uint64_t hi = vec_[i] & (1ULL << 63);
vec_[i] = (vec_[i] << 1) | lo;
lo = hi >> 63;
}
if (lo)
{
alloc(len_ + 1);
vec_[len_ - 1] = 1;
}
}
return *this;
}
/// Bit-shift right by one.
Bits& rshift()
{
uint64_t hi = 0;
for (size_t i = 1; i <= len_; ++i)
{
uint64_t lo = vec_[len_ - i] & 1;
vec_[len_ - i] = (vec_[len_ - i] >> 1) | hi;
hi = lo << 63;
}
return *this;
}
/// Bit-or (set union) the bit vector with the given bits.
Bits& operator|=(const Bits& bits) ///< bits
/// @returns reference to this object.
{
alloc(bits.len_);
for (size_t i = 0; i < bits.len_; ++i)
vec_[i] |= bits.vec_[i];
return *this;
}
/// Bit-and (set intersection) the bit vector with the given bits.
Bits& operator&=(const Bits& bits) ///< bits
/// @returns reference to this object.
{
alloc(bits.len_);
for (size_t i = 0; i < bits.len_; ++i)
vec_[i] &= bits.vec_[i];
for (size_t i = bits.len_; i < len_; ++i)
vec_[i] = 0;
return *this;
}
/// Bit-xor the bit vector with the given bits.
Bits& operator^=(const Bits& bits) ///< bits
/// @returns reference to this object.
{
alloc(bits.len_);
for (size_t i = 0; i < bits.len_; ++i)
vec_[i] ^= bits.vec_[i];
return *this;
}
/// Bit-delete (set minus) the bit vector with the given bits.
Bits& operator-=(const Bits& bits) ///< bits
/// @returns reference to this object.
{
size_t k = len_;
if (bits.len_ < k)
k = bits.len_;
for (size_t i = 0; i < k; ++i)
vec_[i] = (vec_[i] | bits.vec_[i]) - bits.vec_[i];
return *this;
}
/// Bit-or (set union) of two bit vectors.
Bits operator|(const Bits& bits) ///< bits
/// @returns bit vector of the result.
const
{
return Bits(*this) |= bits;
}
/// Bit-and (set intersection) of two bit vectors.
Bits operator&(const Bits& bits) ///< bits
/// @returns bit vector of the result.
const
{
return Bits(*this) &= bits;
}
/// Bit-xor of two bit vectors.
Bits operator^(const Bits& bits) ///< bits
/// @returns bit vector of the result.
const
{
return Bits(*this) ^= bits;
}
/// Bit-delete (set minus) of two bit vectors.
Bits operator-(const Bits& bits) ///< bits
/// @returns bit vector of the result.
const
{
return Bits(*this) -= bits;
}
/// Complement of the bit vector with all bits flipped.
Bits operator~() const
/// @returns bit vector of the result.
{
return Bits(*this).flip();
}
/// Returns true if bit vectors are equal.
bool operator==(const Bits& bits) ///< rhs bits
/// @returns true (equal) or false (unequal).
const
{
size_t k = len_;
if (bits.len_ < k)
k = bits.len_;
for (size_t i = 0; i < k; ++i)
if (vec_[i] != bits.vec_[i])
return false;
for (size_t i = bits.len_; i < len_; ++i)
if (vec_[i] != 0)
return false;
for (size_t i = len_; i < bits.len_; ++i)
if (bits.vec_[i] != 0)
return false;
return true;
}
/// Returns true if bit vectors are unequal.
bool operator!=(const Bits& bits) ///< rhs bits
/// @returns true (unequal) or false (equal).
const
{
return !operator==(bits);
}
/// Returns true if the bit vector is lexicographically less than the given right-hand side bits.
bool operator<(const Bits& bits) ///< rhs bits
/// @returns true (less) or false (greater-or-equal).
const
{
size_t k = len_;
if (bits.len_ < k)
k = bits.len_;
for (size_t i = 0; i < k; ++i)
{
if (vec_[i] < bits.vec_[i])
return true;
if (vec_[i] > bits.vec_[i])
return false;
}
for (size_t i = bits.len_; i < len_; ++i)
if (vec_[i] != 0)
return false;
for (size_t i = len_; i < bits.len_; ++i)
if (bits.vec_[i] != 0)
return true;
return false;
}
/// Returns true if the bit vector is lexicographically greater than the given right-hand side bits.
bool operator>(const Bits& bits) ///< rhs bits
/// @returns true (greater) or false (less-or-equal).
const
{
return bits.operator<(*this);
}
/// Returns true if the bit vector is lexicographically less-or-equal to the given right-hand side bits.
bool operator<=(const Bits& bits) ///< rhs bits
/// @returns true (less-or-equal) or false (greater).
const
{
return !operator>(bits);
}
/// Returns true if the bit vector is lexicographically greater-or-equal to the given right-hand side bits.
bool operator>=(const Bits& bits) ///< rhs bits
/// @returns true (greater-or-equal) or false (less).
const
{
return !operator<(bits);
}
/// Returns true if all bits are set.
bool all() const
/// @returns true if all bits set, false otherwise.
{
for (size_t i = 0; i < len_; ++i)
if (vec_[i] + 1 != 0)
return false;
return true;
}
/// Returns true if any bit is set.
bool any() const
/// @returns true if any bit set, false if none.
{
for (size_t i = 0; i < len_; ++i)
if (vec_[i] != 0)
return true;
return false;
}
/// Erase all bits.
Bits& clear()
/// @returns reference to this object.
{
if (vec_)
std::memset(vec_, 0, len_ << 3);
return *this;
}
/// Flip all bits.
Bits& flip()
/// @returns reference to this object.
{
for (size_t i = 0; i < len_; ++i)
vec_[i] = ~vec_[i];
return *this;
}
/// Reserves space in the bit vector for len bits without changing its current content.
Bits& reserve(size_t len) ///< number of bits to reserve
/// @returns reference to this object.
{
if (len)
alloc(((len - 1) >> 6) + 1);
return *this;
}
/// Returns the current length of the bit vector.
size_t size() const
/// @returns number of bits.
{
return len_ << 6;
}
/// Returns the number of bits set.
size_t count() const
/// @returns number of 1 bits.
{
size_t n = 0, k = 0;
while ((n = find_first(n)) != npos)
++n, ++k;
return k;
}
/// Returns true if the bit vector intersects with the given bits, false if the bit vectors are disjoint.
bool intersects(const Bits& bits) ///< bits
/// @returns true if bits intersect or false if disjoint.
const
{
size_t k = len_;
if (bits.len_ < k)
k = bits.len_;
for (size_t i = 0; i < k; ++i)
if (vec_[i] & bits.vec_[i])
return true;
return false;
}
/// Returns true if the given bits are a subset of the bit vector, i.e. for each bit in bits, the corresponding bit in the bit vector is set.
bool contains(const Bits& bits) ///< bits
/// @returns true if bits is a subset.
const
{
size_t k = len_;
if (bits.len_ < k)
k = bits.len_;
for (size_t i = 0; i < k; ++i)
if (vec_[i] != (vec_[i] | bits.vec_[i]))
return false;
for (size_t i = len_; i < bits.len_; ++i)
if (bits.vec_[i] != 0)
return false;
return true;
}
/// Returns the position of the first bit set in the bit vector, or Bits::npos if none.
size_t find_first(size_t n = 0) ///< internal parameter (do not use)
/// @returns first position or Bits::npos.
const
{
size_t i = n >> 6;
if (i < len_ && vec_[i])
for (size_t j = n & 0x3F; j < 64; ++j)
if (vec_[i] & 1ULL << j)
return (i << 6) + j;
for (i = i + 1; i < len_; ++i)
if (vec_[i])
for (size_t j = 0; j < 64; ++j)
if (vec_[i] & 1ULL << j)
return (i << 6) + j;
return npos;
}
/// Returns the next position of a bit set in the bit vector, or Bits::npos if none.
size_t find_next(size_t n) ///< the current position to search from
/// @returns next position or Bits::npos.
const
{
return find_first(n + 1);
}
/// Swap bit vectors.
void swap(Bits& bits) ///< bits
{
size_t k = len_;
uint64_t *p = vec_;
len_ = bits.len_;
vec_ = bits.vec_;
bits.len_ = k;
bits.vec_ = p;
}
private:
/// On-demand allocator.
void alloc(size_t len) ///< number of words required
{
if (len > len_)
{
size_t k = 1;
while (k < len)
k <<= 1;
uint64_t *p = new uint64_t[k]();
if (vec_)
{
std::memcpy(p, vec_, len_ << 3);
delete[] vec_;
}
len_ = k;
vec_ = p;
}
}
size_t len_; ///< number of words
uint64_t *vec_; ///< array of words
};
} // namespace reflex
#endif
|