File: pattern.h

package info (click to toggle)
ugrep 7.4.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 19,008 kB
  • sloc: cpp: 69,034; ansic: 9,848; sh: 1,897; makefile: 312; java: 6; xml: 6
file content (1339 lines) | stat: -rw-r--r-- 49,402 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
/******************************************************************************\
* Copyright (c) 2016, Robert van Engelen, Genivia Inc. All rights reserved.    *
*                                                                              *
* Redistribution and use in source and binary forms, with or without           *
* modification, are permitted provided that the following conditions are met:  *
*                                                                              *
*   (1) Redistributions of source code must retain the above copyright notice, *
*       this list of conditions and the following disclaimer.                  *
*                                                                              *
*   (2) Redistributions in binary form must reproduce the above copyright      *
*       notice, this list of conditions and the following disclaimer in the    *
*       documentation and/or other materials provided with the distribution.   *
*                                                                              *
*   (3) The name of the author may not be used to endorse or promote products  *
*       derived from this software without specific prior written permission.  *
*                                                                              *
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF         *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO   *
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,       *
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;  *
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,     *
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR      *
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF       *
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                   *
\******************************************************************************/

/**
@file      pattern.h
@brief     RE/flex regular expression pattern compiler
@author    Robert van Engelen - engelen@genivia.com
@copyright (c) 2016-2025, Robert van Engelen, Genivia Inc. All rights reserved.
@copyright (c) BSD-3 License - see LICENSE.txt
*/

#ifndef REFLEX_PATTERN_H
#define REFLEX_PATTERN_H

#include <reflex/bits.h>
#include <reflex/debug.h>
#include <reflex/error.h>
#include <reflex/input.h>
#include <reflex/ranges.h>
#include <reflex/setop.h>
#include <cstdint>
#include <cctype>
#include <cstring>
#include <iostream>
#include <string>
#include <list>
#include <map>
#include <set>
#include <array>
#include <bitset>
#include <vector>
#include <stack>

// ugrep 7.0: use vectorized bitap (hashed) with AVX2, but it is not faster (in our extensive emperical testing)
// #define WITH_BITAP_AVX2

// ugrep 3.7.0a: use a map to construct fixed string pattern trees
// #define WITH_TREE_MAP
// ugrep 3.7.0b: use a DFA as a tree to bypass DFA construction step when possible
#define WITH_TREE_DFA

#if (defined(__WIN32__) || defined(_WIN32) || defined(WIN32) || defined(_WIN64) || defined(__BORLANDC__)) && !defined(__CYGWIN__) && !defined(__MINGW32__) && !defined(__MINGW64__)
# pragma warning( disable : 4290 )
#endif

namespace reflex {

/// Pattern class holds a regex pattern and its compiled FSM opcode table or code for the reflex::Matcher engine.
class Pattern {
  friend class Matcher;      ///< permit access by the reflex::Matcher engine
  friend class FuzzyMatcher; ///< permit access by the reflex::FuzzyMatcher engine
 public:
  typedef uint8_t  Bitap;  ///< bitap bitmask, may change in a future update
  typedef uint8_t  Pred;   ///< predict match bits
  typedef uint16_t Hash;   ///< hash value type, max value is Const::HASH
  typedef uint32_t Index;  ///< index into opcodes array Pattern::opc_ and subpattern indexing
  typedef uint32_t Accept; ///< group capture index
  typedef uint32_t Opcode; ///< 32 bit opcode word
  typedef void (*FSM)(class Matcher&); ///< function pointer to FSM code
  /// Common constants.
  struct Const {
    static const Index  IMAX = 0xffffffff; ///< max index, also serves as a marker
    static const Index  GMAX = 0xfeffff;   ///< max goto index
    static const Accept AMAX = 0xfdffff;   ///< max accept
    static const Index  LMAX = 0xfaffff;   ///< max lookahead index
    static const Index  LONG = 0xfffe;     ///< LONG marker for 64 bit opcodes, must be HALT-1
    static const Index  HALT = 0xffff;     ///< HALT marker for GOTO opcodes, must be 16 bit max
    static const Hash   HASH = 0x1000;     ///< size of the predict match array
    static const Hash   BTAP = 0x0800;     ///< size of the bitap hashed character pairs array
    static const Bitap  BITS = 8;          ///< number of bitap bits, may change in a future update
  };
  /// Construct an unset pattern.
  Pattern()
    :
      opc_(NULL),
      fsm_(NULL),
      nop_(0)
  {
    init(NULL);
  }
  /// Construct a pattern object given a regex string.
  explicit Pattern(
      const char *regex,
      const char *options = NULL)
    :
      rex_(regex),
      opc_(NULL),
      fsm_(NULL)
  {
    init(options);
  }
  /// Construct a pattern object given a regex string.
  Pattern(
      const char        *regex,
      const std::string& options)
    :
      rex_(regex),
      opc_(NULL),
      fsm_(NULL)
  {
    init(options.c_str());
  }
  /// Construct a pattern object given a regex string.
  explicit Pattern(
      const std::string& regex,
      const char        *options = NULL)
    :
      rex_(regex),
      opc_(NULL),
      fsm_(NULL)
  {
    init(options);
  }
  /// Construct a pattern object given a regex string.
  Pattern(
      const std::string& regex,
      const std::string& options)
    :
      rex_(regex),
      opc_(NULL),
      fsm_(NULL)
  {
    init(options.c_str());
  }
  /// Construct a pattern object given an opcode table.
  explicit Pattern(
      const Opcode  *code,
      const uint8_t *pred = NULL)
    :
      opc_(code),
      fsm_(NULL)
  {
    init(NULL, pred);
  }
  /// Construct a pattern object given a function pointer to FSM code.
  explicit Pattern(
      FSM            fsm,
      const uint8_t *pred = NULL)
    :
      opc_(NULL),
      fsm_(fsm)
  {
    init(NULL, pred);
  }
  /// Copy constructor.
  Pattern(const Pattern& pattern) ///< pattern to copy
  {
    operator=(pattern);
  }
  /// Destructor, deletes internal code array when owned and allocated.
  virtual ~Pattern()
  {
    clear();
  }
  /// Clear and delete pattern data.
  void clear()
  {
    rex_.clear();
    if (nop_ > 0 && opc_ != NULL)
      delete[] opc_;
    opc_ = NULL;
    nop_ = 0;
    fsm_ = NULL;
  }
  /// Assign a (new) pattern.
  Pattern& assign(
      const char *regex,
      const char *options = NULL)
  {
    clear();
    rex_ = regex;
    init(options);
    return *this;
  }
  /// Assign a (new) pattern.
  Pattern& assign(
      const char        *regex,
      const std::string& options)
  {
    return assign(regex, options.c_str());
  }
  /// Assign a (new) pattern.
  Pattern& assign(
      const std::string& regex,
      const char        *options = NULL)
  {
    return assign(regex.c_str(), options);
  }
  /// Assign a (new) pattern.
  Pattern& assign(
      const std::string& regex,
      const std::string& options)
  {
    return assign(regex.c_str(), options.c_str());
  }
  /// Assign a (new) pattern.
  Pattern& assign(
      const Opcode  *code,
      const uint8_t *pred = NULL)
  {
    clear();
    opc_ = code;
    init(NULL, pred);
    return *this;
  }
  /// Assign a (new) pattern.
  Pattern& assign(
      FSM            fsm,
      const uint8_t *pred = NULL)
  {
    clear();
    fsm_ = fsm;
    init(NULL, pred);
    return *this;
  }
  /// Assign a (new) pattern.
  Pattern& operator=(const Pattern& pattern)
  {
    clear();
    opt_ = pattern.opt_;
    rex_ = pattern.rex_;
    end_ = pattern.end_;
    acc_ = pattern.acc_;
    vno_ = pattern.vno_;
    eno_ = pattern.eno_;
    pms_ = pattern.pms_;
    vms_ = pattern.vms_;
    ems_ = pattern.ems_;
    wms_ = pattern.wms_;
    if (pattern.nop_ > 0 && pattern.opc_ != NULL)
    {
      nop_ = pattern.nop_;
      Opcode *code = new Opcode[nop_];
      for (size_t i = 0; i < nop_; ++i)
        code[i] = pattern.opc_[i];
      opc_ = code;
    }
    else
    {
      fsm_ = pattern.fsm_;
    }
    return *this;
  }
  /// Assign a (new) pattern.
  Pattern& operator=(const char *regex)
  {
    return assign(regex);
  }
  /// Assign a (new) pattern.
  Pattern& operator=(const std::string& regex)
  {
    return assign(regex);
  }
  /// Assign a (new) pattern.
  Pattern& operator=(const Opcode *code)
  {
    return assign(code);
  }
  /// Assign a (new) pattern.
  Pattern& operator=(FSM fsm)
  {
    return assign(fsm);
  }
  /// Get the number of subpatterns of this pattern object.
  Accept size() const
    /// @returns number of subpatterns
  {
    return static_cast<Accept>(end_.size());
  }
  /// Return true if this pattern is not assigned.
  bool empty() const
    /// @return true if this pattern is not assigned
  {
    return opc_ == NULL && fsm_ == NULL;
  }
  /// Get subpattern regex of this pattern object or the whole regex with index 0.
  const std::string operator[](Accept choice) const
    /// @returns subpattern string or "" when not set
    ;
  /// Check if subpattern is reachable by a match.
  bool reachable(Accept choice) const
    /// @returns true if subpattern is reachable
  {
    return choice >= 1 && choice <= size() && acc_.at(choice - 1);
  }
  /// Get the number of finite state machine nodes (vertices).
  size_t nodes() const
    /// @returns number of nodes or 0 when no finite state machine was constructed by this pattern
  {
    return nop_ > 0 ? vno_ : 0;
  }
  /// Get the number of finite state machine edges (transitions on input characters).
  size_t edges() const
    /// @returns number of edges or 0 when no finite state machine was constructed by this pattern
  {
    return nop_ > 0 ? eno_ : 0;
  }
  /// Get the code size in number of words.
  size_t words() const
    /// @returns number of words or 0 when no code was generated by this pattern
  {
    return nop_;
  }
  /// Get the total number of indexing hash tables constructed for the optional HFA.
  size_t hashes() const
    /// @returns number of HFA hashes total for all HFA edges
  {
    return hno_;
  }
  /// Get elapsed regex parsing and analysis time.
  float parse_time() const
    /// @returns time in ms
  {
    return pms_;
  }
  /// Get elapsed DFA vertices construction time.
  float nodes_time() const
    /// @returns time in ms
  {
    return vms_;
  }
  /// Get elapsed DFA edges construction time.
  float edges_time() const
    /// @returns time in ms
  {
    return ems_;
  }
  /// Get elapsed code words assembly time.
  float words_time() const
    /// @returns time in ms
  {
    return wms_;
  }
  /// Get elapsed time of DFA analysis to predict matches and construct an optional HFA.
  float analysis_time() const
    /// @returns time in ms
  {
    return ams_;
  }
  /// Returns true when match is predicted, based on s[0..3..e-1] (e >= s + 4 and n >= 4).
  inline bool predict_match(const char *s, size_t n) const
  {
    uint32_t h = static_cast<uint8_t>(*s);
    uint32_t f = pmh_[h] & 1;
    h = hash(h, static_cast<uint8_t>(*++s));
    f |= pmh_[h] & 2;
    h = hash(h, static_cast<uint8_t>(*++s));
    f |= pmh_[h] & 4;
    h = hash(h, static_cast<uint8_t>(*++s));
    f |= pmh_[h] & 8;
    if (f != 0)
      return false;
    const char *e = s + n - 3;
    uint32_t m = 16;
    while (++s < e)
    {
      h = hash(h, static_cast<uint8_t>(*s));
      f |= pmh_[h] & m;
      m <<= 1;
    }
    return f == 0;
  }
  /// Returns true when match is predicted using my PM4 logic.
  inline bool predict_match(const char *s) const
  {
    uint8_t c0 = static_cast<uint8_t>(s[0]);
    uint8_t c1 = static_cast<uint8_t>(s[1]);
    uint8_t c2 = static_cast<uint8_t>(s[2]);
    uint8_t c3 = static_cast<uint8_t>(s[3]);
    uint32_t h1 = hash(c0, c1);
    uint32_t h2 = hash(h1, c2);
    uint32_t h3 = hash(h2, c3);
    Pred p = (pma_[c0] & 0xc0) | (pma_[h1] & 0x30) | (pma_[h2] & 0x0c) | (pma_[h3] & 0x03);
    Pred m = ((((((p >> 2) | p) >> 2) | p) >> 1) | p);
    return m != 0xff;
  }
  /// Relative frequency of English letters with upper/lower-case ratio = 0.0563, punctuation and UTF-8 bytes.
  static uint8_t frequency(uint8_t c)
  {
    static unsigned char freq[256] =
      // x64 binary frequencies combined with ASCII TAB/LF/CR control code frequencies
      "\377\101\14\22\15\21\10\10\24\73\41\10\11\41\6\51"
      "\16\4\3\3\3\3\3\3\6\3\3\2\3\4\4\12"
      // TAB/LF/CR control code frequencies in text
      // "\0\0\0\0\0\0\0\0\0\73\41\0\0\41\0\0"
      // "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
      // ASCII frequencies
      "\377\0\1\1\0\0\16\33\6\6\7\0\27\11\27\14"
      "\13\14\10\5\4\5\4\4\4\7\12\21\10\14\10\0"
      "\0\11\2\3\5\16\2\2\7\10\0\1\4\3\7\10"
      "\2\0\6\7\12\3\1\3\0\2\0\70\1\70\0\1"
      "\0\237\35\64\133\373\53\47\170\205\3\20\115\64\202\227"
      "\45\2\162\170\272\64\23\56\3\47\2\3\15\3\0\0"
      // upper half with UTF-8 multibyte frequencies (synthesized from Unicode tables)
      "\47\47\47\47\47\47\47\47\47\47\47\47\47\47\47\47"
      "\45\45\45\45\45\45\45\45\45\45\45\45\45\45\45\45"
      "\45\45\45\45\45\45\45\45\45\45\45\45\45\45\45\45"
      "\42\44\42\44\44\44\44\44\44\44\44\44\42\44\44\44"
      "\0\0\5\5\5\5\0\5\5\5\5\5\5\5\0\5"
      "\0\5\5\5\0\5\5\5\5\5\5\5\5\5\5\5"
      "\40\72\76\100\100\100\100\100\100\100\76\100\100\40\100\77"
      "\73\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
    return freq[c];
  }
 protected:
  /// Throw an error.
  virtual void error(
      regex_error_type code,    ///< error code
      size_t           pos = 0) ///< optional location of the error in regex string Pattern::rex_
    const;
 private:
  typedef uint8_t                 Mod;
  typedef uint16_t                Char; // 8 bit char and meta chars up to META_MAX-1
  typedef uint8_t                 Lazy;
  typedef uint16_t                Iter;
  typedef uint16_t                Lookahead;
  typedef std::set<Lookahead>     Lookaheads;
  typedef uint32_t                Location;
  typedef ORanges<Location>       Locations;
  typedef std::map<int,Locations> Map;
  typedef Locations               Mods[10];
  /// Modifiers 'i', 'm', 'q', 's', 'u' (enable) 'I', 'M', 'Q', 'S', 'U' (disable)
  struct ModConst {
    static const Mod i = 0;
    static const Mod I = 1;
    static const Mod m = 2;
    static const Mod M = 3;
    static const Mod q = 4;
    static const Mod Q = 5;
    static const Mod s = 6;
    static const Mod S = 7;
    static const Mod u = 8;
    static const Mod U = 9;
  };
  /// Set of chars and meta chars
  struct Chars {
    Chars()                                 { clear(); }
    Chars(const Chars& c)                   { b[0] = c.b[0]; b[1] = c.b[1]; b[2] = c.b[2]; b[3] = c.b[3]; b[4] = c.b[4]; }
    Chars(const uint64_t c[5])              { b[0] = c[0]; b[1] = c[1]; b[2] = c[2]; b[3] = c[3]; b[4] = c[4]; }
    void   clear()                          { b[0] = b[1] = b[2] = b[3] = b[4] = 0ULL; }
    bool   any()                      const { return b[0] | b[1] | b[2] | b[3] | b[4]; }
    bool   intersects(const Chars& c) const { return (b[0] & c.b[0]) | (b[1] & c.b[1]) | (b[2] & c.b[2]) | (b[3] & c.b[3]) | (b[4] & c.b[4]); }
    bool   contains(const Chars& c)   const { return !(c - *this).any(); }
    bool   contains(Char c)           const { return b[c >> 6] & (1ULL << (c & 0x3f)); }
    Chars& add(Char c)                      { b[c >> 6] |= 1ULL << (c & 0x3f); return *this; }
    Chars& add(Char lo, Char hi)            { while (lo <= hi) add(lo++); return *this; }
    Chars& flip()                           { b[0] = ~b[0]; b[1] = ~b[1]; b[2] = ~b[2]; b[3] = ~b[3]; b[4] = ~b[4]; return *this; }
    Chars& flip256()                        { b[0] = ~b[0]; b[1] = ~b[1]; b[2] = ~b[2]; b[3] = ~b[3]; return *this; }
    Chars& swap(Chars& c)                   { Chars t = c; c = *this; return *this = t; }
    Chars& operator+=(const Chars& c)       { return operator|=(c); }
    Chars& operator-=(const Chars& c)       { b[0] &=~c.b[0]; b[1] &=~c.b[1]; b[2] &=~c.b[2]; b[3] &=~c.b[3]; b[4] &=~c.b[4]; return *this; }
    Chars& operator|=(const Chars& c)       { b[0] |= c.b[0]; b[1] |= c.b[1]; b[2] |= c.b[2]; b[3] |= c.b[3]; b[4] |= c.b[4]; return *this; }
    Chars& operator&=(const Chars& c)       { b[0] &= c.b[0]; b[1] &= c.b[1]; b[2] &= c.b[2]; b[3] &= c.b[3]; b[4] &= c.b[4]; return *this; }
    Chars& operator^=(const Chars& c)       { b[0] ^= c.b[0]; b[1] ^= c.b[1]; b[2] ^= c.b[2]; b[3] ^= c.b[3]; b[4] ^= c.b[4]; return *this; }
    Chars  operator+(const Chars& c)  const { return Chars(*this) += c; }
    Chars  operator-(const Chars& c)  const { return Chars(*this) -= c; }
    Chars  operator|(const Chars& c)  const { return Chars(*this) |= c; }
    Chars  operator&(const Chars& c)  const { return Chars(*this) &= c; }
    Chars  operator^(const Chars& c)  const { return Chars(*this) ^= c; }
    Chars  operator~()                const { return Chars(*this).flip(); }
           operator bool()            const { return any(); }
    Chars& operator=(const Chars& c)        { b[0] = c.b[0]; b[1] = c.b[1]; b[2] = c.b[2]; b[3] = c.b[3]; b[4] = c.b[4]; return *this; }
    bool   operator!=(const Chars& c) const { return (b[0] ^ c.b[0]) | (b[1] ^ c.b[1]) | (b[2] ^ c.b[2]) | (b[3] ^ c.b[3]) | (b[4] ^ c.b[4]); }
    bool   operator==(const Chars& c) const { return !(c != *this); }
    bool   operator<(const Chars& c)  const { return b[0] < c.b[0] || (b[0] == c.b[0] && (b[1] < c.b[1] || (b[1] == c.b[1] && (b[2] < c.b[2] || (b[2] == c.b[2] && (b[3] < c.b[3] || (b[3] == c.b[3] && b[4] < c.b[4]))))))); }
    bool   operator>(const Chars& c)  const { return c < *this; }
    bool   operator<=(const Chars& c) const { return !(c < *this); }
    bool   operator>=(const Chars& c) const { return !(*this < c); }
    Char   lo()                       const { for (Char i = 0; i < 5; ++i) if (b[i]) for (Char j = 0; j < 64; ++j) if (b[i] & (1ULL << j)) return (i << 6) + j; return 0; }
    Char   hi()                       const { for (Char i = 0; i < 5; ++i) if (b[4-i]) for (Char j = 0; j < 64; ++j) if (b[4-i] & (1ULL << (63-j))) return ((4-i) << 6) + (63-j); return 0; }
    uint64_t b[5]; ///< 256 bits to store a set of 8-bit chars + extra bits for meta
  };
  /// Finite state machine construction position information.
  struct Position {
    typedef uint64_t        value_type;
    static const Iter       MAXITER = 0xffff;
    static const Location   MAXLOC  = 0xffffffffUL;
    static const value_type NPOS    = 0xffffffffffffffffULL;
    static const value_type RES1    = 1ULL << 48; ///< reserved
    static const value_type RES2    = 1ULL << 49; ///< reserved
    static const value_type RES3    = 1ULL << 50; ///< reserved
    static const value_type NEGATE  = 1ULL << 51; ///< marks negative patterns
    static const value_type TICKED  = 1ULL << 52; ///< marks lookahead ending ) in (?=X)
    static const value_type RES4    = 1ULL << 53; ///< reserved
    static const value_type ANCHOR  = 1ULL << 54; ///< marks begin of word (\b,\<,\>) and buffer (\A,^) anchors
    static const value_type ACCEPT  = 1ULL << 55; ///< accept, not a regex position
    Position()                   : k(NPOS) { }
    Position(value_type k)       : k(k)    { }
    Position(const Position& p)  : k(p.k)  { }
    Position& operator=(const Position& p) { k = p.k; return *this; }
    operator value_type()            const { return k; }
    Position iter(Iter i)            const { return Position(k + (static_cast<value_type>(i) << 32)); }
    Position negate(bool b)          const { return b ? Position(k | NEGATE) : Position(k & ~NEGATE); }
    Position ticked(bool b)          const { return b ? Position(k | TICKED) : Position(k & ~TICKED); }
    Position anchor(bool b)          const { return b ? Position(k | ANCHOR) : Position(k & ~ANCHOR); }
    Position accept(bool b)          const { return b ? Position(k | ACCEPT) : Position(k & ~ACCEPT); }
    Position lazy(Lazy l)            const { return Position((k & 0x00ffffffffffffffULL) | static_cast<value_type>(l) << 56); }
    Position pos()                   const { return Position(k & 0x0000ffffffffffffULL); }
    Location loc()                   const { return static_cast<Location>(k); }
    Accept   accepts()               const { return static_cast<Accept>(k); }
    Iter     iter()                  const { return static_cast<Index>((k >> 32) & 0xffff); }
    bool     negate()                const { return (k & NEGATE) != 0; }
    bool     ticked()                const { return (k & TICKED) != 0; }
    bool     anchor()                const { return (k & ANCHOR) != 0; }
    bool     accept()                const { return (k & ACCEPT) != 0; }
    Lazy     lazy()                  const { return static_cast<Lazy>(k >> 56); }
    value_type k;
  };
  typedef std::vector<Position>        Lazypos;
  typedef std::vector<Position>        Positions;
  typedef std::map<Position,Positions> Follow;
  typedef std::pair<Chars,Positions>   Move;
  typedef std::list<Move>              Moves;
  static inline void pos_insert(Positions& s1, const Positions& s2) { s1.insert(s1.end(), s2.begin(), s2.end()); }
  static inline void pos_add(Positions& s, const Position& e) { s.insert(s.end(), e); }
  static inline void lazy_insert(Lazypos& s1, const Lazypos& s2) { s1.insert(s1.end(), s2.begin(), s2.end()); }
  static inline void lazy_add(Lazypos& s, const Lazy i, Location p) { s.insert(s.end(), Position(p).lazy(i)); }
#ifndef WITH_TREE_DFA
  /// Tree DFA constructed from string patterns.
  struct Tree {
#ifdef WITH_TREE_MAP
    struct Node {
      Node()
        :
          accept(0)
      { }
      std::map<Char,Node> edges;  ///< edges to next tree nodes
      Accept              accept; ///< nonzero if final state, the index of an accepted/captured subpattern
    };
    Tree()
      :
        tree(NULL)
    { }
    ~Tree()
    {
      clear();
    }
    /// delete the tree and all subnodes.
    void clear()
    {
      if (tree != NULL)
        delete tree;
      tree = NULL;
    }
    /// return the root of the tree.
    Node *root()
    {
      return tree != NULL ? tree : (tree = new Node);
    }
    /// create an edge from a tree node to a target tree node, return the target tree node.
    Node *edge(Node *node, Char c)
    {
      return &node->edges[c];
    }
    Node *tree; ///< root of the tree or NULL
#else
    struct Node {
      Node()
        :
          accept(0)
      {
        for (int i = 0; i < 16; ++i)
          edge[i] = NULL;
      }
      ~Node()
      {
        for (int i = 0; i < 16; ++i)
          if (edge[i] != NULL)
            delete[] edge[i];
      }
      Node **edge[16]; ///< 16x16 edges, one per 8-bit char
      Accept accept;   ///< nonzero if final state, the index of an accepted/captured subpattern
    };
    typedef std::list<Node*> List;
    static const uint16_t ALLOC = 1024; ///< allocate 1024 nodes at a time, to improve performance
    Tree()
      :
        tree(NULL),
        next(ALLOC)
    { }
    ~Tree()
    {
      clear();
    }
    /// delete the tree DFA and reset to the intial state.
    void clear()
    {
      for (List::iterator i = list.begin(); i != list.end(); ++i)
        delete[] *i;
      list.clear();
      tree = NULL;
      next = ALLOC;
    }
    /// return the root of the tree.
    Node *root()
    {
      return tree != NULL ? tree : (tree = leaf());
    }
    /// create an edge from a tree node to a target tree node, return the target tree node.
    Node *edge(Node *node, Char c)
    {
      Node **p = node->edge[c >> 4];
      if (p != NULL)
        return p[c & 0xf] != NULL ?  p[c & 0xf] : (p[c & 0xf]  = leaf());
      p = node->edge[c >> 4] = new Node*[16];
      for (int i = 0; i < 16; ++i)
        p[i] = NULL;
      return p[c & 0xf] = leaf();
    }
    /// create a new leaf node.
    Node *leaf()
    {
      if (next >= ALLOC)
      {
        list.push_back(new Node[ALLOC]);
        next = 0;
      }
      return &list.back()[next++];
    }
    Node    *tree; ///< root of the tree or NULL
    List     list; ///< block allocation list
    uint16_t next; ///< block allocation, next available slot in last block
#endif
  };
#endif
  /// DFA created by subset construction from regex patterns.
  struct DFA {
    struct State : Positions {
      typedef std::pair<Char,State*> Edge;  ///< hi of char range [lo,hi] and state to transition to
      typedef std::map<Char,Edge>    Edges; ///< maps lo to hi and state to transition to on char in range [lo,hi]
      State()
        :
          next(NULL),
          left(NULL),
          right(NULL),
          tnode(NULL),
          first(0),
          index(0),
          accept(0),
          redo(false)
      { }
#ifndef WITH_TREE_DFA
      State *assign(Tree::Node *node)
      {
        tnode = node;
        return this;
      }
      State *assign(Tree::Node *node, Positions& pos)
      {
        tnode = node;
        this->swap(pos);
        return this;
      }
#endif
      State      *next;   ///< points to next state in the list of states allocated depth-first by subset construction
      State      *left;   ///< left pointer for O(log N) node insertion in the hash table overflow tree
      State      *right;  ///< right pointer for O(log N) node insertion in the hash table overflow tree
#ifdef WITH_TREE_DFA
      State      *tnode;  ///< the corresponding tree DFA node, when applicable
#else
      Tree::Node *tnode;  ///< the corresponding tree DFA node, when applicable
#endif
      Edges       edges;  ///< state transitions
      Lookaheads  heads;  ///< lookahead head set
      Lookaheads  tails;  ///< lookahead tail set
      Index       first;  ///< index of this state in the opcode table in the first assembly pass, also used in breadth-first search to cut DFA for predict match
      Index       index;  ///< index of this state in the opcode table, also used in HFA construction
      Accept      accept; ///< nonzero if final state, the index of an accepted/captured subpattern
      bool        redo;   ///< true if this is a final state of a negative pattern
    };
    // transitive closure of DFA meta edges; no follow metas to accepting states and no follow cycles
    struct MetaEdgesClosure {
      MetaEdgesClosure(State& state)
      {
        edge = state.edges.begin();
        end = state.edges.end();
        accept = state.accept > 0 || state.edges.empty();
        walk();
      }
      MetaEdgesClosure(State *state)
      {
        edge = state->edges.begin();
        end = state->edges.end();
        accept = state->accept > 0 || state->edges.empty();
        walk();
      }
      ~MetaEdgesClosure()
      {
        // clean up markers
        while (!done())
          ++edge;
      }
      MetaEdgesClosure& operator++()
      {
        ++edge;
        walk();
        return *this;
      }
      Char lo() const
      {
        return edge->first;
      }
      Char hi() const
      {
        return edge->second.first;
      }
      State *state() const
      {
        return edge->second.second; // target state is non-NULL by walk()
      }
      bool accepting() const
      {
        return accept;
      }
      bool next_accepting() const
      {
        if (state() == NULL || state()->accept > 0 || state()->edges.empty())
          return true;
        return is_meta(state()->edges.rbegin()->first) && MetaEdgesClosure(state()).find_accepting();
      }
      bool find_accepting()
      {
        while (!done())
          ++edge;
        return accepting();
      }
      bool done()
      {
        while (edge == end)
        {
          if (stack.empty())
            return true;
          // restore previous iterators
          edge = stack.top().first;
          end = stack.top().second;
          stack.pop();
          // unmark state visited
          state()->index = 0;
          ++edge;
        }
        return false;
      }
      void walk()
      {
        if (done())
          return;
        // walk the DFA graph acyclicly until non-meta edge to a non-NULL state
        while (is_meta(lo()) || state() == NULL)
        {
          // find non-empty non-visited non-accepting state on a meta edge
          State *next_state;
          do
          {
            next_state = state();
            if (next_state == NULL || next_state->accept > 0 || next_state->edges.empty())
              accept = true;
            else if (next_state->index != 1)
              break;
            ++edge;
            if (done())
              return;
          } while (is_meta(lo()) || next_state == NULL);
          // save current iterators
          stack.push(std::pair<State::Edges::const_iterator,State::Edges::const_iterator>(edge,end));
          // mark state as visited
          next_state->index = 1;
          // new iterators
          edge = next_state->edges.begin();
          end = next_state->edges.end();
        }
      }
      std::stack<std::pair<State::Edges::const_iterator,State::Edges::const_iterator> > stack;
      State::Edges::const_iterator edge;
      State::Edges::const_iterator end;
      bool accept;
    };
    typedef std::list<State*> List;
    static const uint16_t ALLOC = 1024;           ///< allocate 1024 DFA states at a time, to improve performance
    static const uint16_t MAX_DEPTH = 256;        ///< analyze DFA up to states this deep to improve predict match
    static const Index MAX_STATES = Const::GMAX;  ///< maximum number of states
    static const Index DEAD_PATH = 1;             ///< state marker "path always and only reaches backedges" (a dead end)
    static const Index KEEP_PATH = MAX_DEPTH;     ///< state marker "required path" (from a newline edge)
    static const Index LOOP_PATH = MAX_DEPTH + 1; ///< state marker "path reaches a backedge" (collect lookback chars)
    DFA()
      :
        next(ALLOC)
    { }
    ~DFA()
    {
      clear();
    }
    /// delete DFA and reset to initial state.
    void clear()
    {
      for (List::iterator i = list.begin(); i != list.end(); ++i)
        delete[] *i;
      list.clear();
      next = ALLOC;
    }
#ifdef WITH_TREE_DFA
    /// new DFA state.
    State *state()
    {
      if (next >= ALLOC)
      {
        list.push_back(new State[ALLOC]);
        next = 0;
      }
      return &list.back()[next++];
    }
    /// new DFA state with positions, destroys pos.
    State *state(Positions& pos)
    {
      State *s = state();
      s->swap(pos);
      return s;
    }
    /// new DFA state with optional tree DFA node and positions, destroys pos.
    State *state(State *tnode)
    {
      State *s = state();
      s->tnode = tnode;
      return s;
    }
    /// new DFA state with optional tree DFA node and positions, destroys pos.
    State *state(State *tnode, Positions& pos)
    {
      State *s = state(tnode);
      s->swap(pos);
      return s;
    }
    /// root of the DFA is the first state created or NULL.
    State *root()
    {
      return list.empty() ? NULL : list.front();
    }
    /// start state the DFA is the first state created.
    State *start()
    {
      return list.empty() ? state() : list.front();
    }
#else
    /// new DFA state with optional tree DFA node.
    State *state(Tree::Node *node)
    {
      if (next >= ALLOC)
      {
        list.push_back(new State[ALLOC]);
        next = 0;
      }
      return list.back()[next++].assign(node);
    }
    /// new DFA state with optional tree DFA node and positions, destroys pos.
    State *state(Tree::Node *node, Positions& pos)
    {
      if (next >= ALLOC)
      {
        list.push_back(new State[ALLOC]);
        next = 0;
      }
      return list.back()[next++].assign(node, pos);
    }
#endif
    List     list; ///< block allocation list
    uint16_t next; ///< block allocation, next available slot in last block
  };
  /// Indexing hash finite state automaton for indexed file search.
  struct HFA {
    static const size_t MAX_DEPTH  =     16; ///< max hashed pattern length must be between 3 and 16, long is accurate
    static const size_t MAX_CHAIN  =      8; ///< max length of hashed chars chain must be between 2 and 8 (8 is optimal)
    static const size_t MAX_STATES =   1024; ///< max number of states must be 256 or greater
    static const size_t MAX_RANGES = 262144; ///< max number of hashes ranges on an edge to the next state
    typedef ORanges<Hash>                    HashRange;
    typedef std::array<HashRange,MAX_DEPTH>  HashRanges;
    typedef std::map<DFA::State*,HashRanges> StateHashes;
    typedef Index                            State;
    typedef std::map<State,HashRanges>       Hashes;
    typedef std::set<State>                  StateSet;
    typedef std::map<State,StateSet>         States;
    typedef std::bitset<MAX_STATES>          VisitSet;
    Hashes hashes[MAX_DEPTH];
    States states;
  };
  /// Global modifier modes, syntax flags, and compiler options.
  struct Option {
    Option() : b(), h(), e(), f(), g(0), i(), m(), n(), o(), p(), q(), r(), s(), w(), x(), z() { }
    bool                     b; ///< disable escapes in bracket lists
    bool                     h; ///< construct indexing hash finite state automaton
    Char                     e; ///< escape character, or > 255 for none, a backslash by default
    std::vector<std::string> f; ///< output the patterns and/or DFA to files(s)
    int                      g; ///< debug level 0,1,2: output a cut DFA graphviz file with option f, predict match and HFA states
    bool                     i; ///< case insensitive mode, also `(?i:X)`
    bool                     m; ///< multi-line mode, also `(?m:X)`
    std::string              n; ///< pattern name (for use in generated code)
    bool                     o; ///< generate optimized FSM code with option f
    bool                     p; ///< with option f also output predict match array for fast search with find()
    bool                     q; ///< enable "X" quotation of verbatim content, also `(?q:X)`
    bool                     r; ///< raise syntax errors as exceptions
    bool                     s; ///< single-line mode (dotall mode), also `(?s:X)`
    bool                     w; ///< write error message to stderr
    bool                     x; ///< free-spacing mode, also `(?x:X)`
    std::string              z; ///< namespace (NAME1.NAME2.NAME3)
  };
  /// Meta characters.
  enum Meta {
    META_MIN = 0x100,
    // word boundaries
    META_WBB = 0x101, ///< word boundary at begin     `\bx`
    META_WBE = 0x102, ///< word boundary at end       `x\b`
    META_NWB = 0x103, ///< non-word boundary at begin `\Bx`
    META_NWE = 0x104, ///< non-word boundary at end   `x\B`
    META_BWB = 0x105, ///< begin of word at begin     `\<x`
    META_EWB = 0x106, ///< end of word at begin       `\>x`
    META_BWE = 0x107, ///< begin of word at end       `x\<`
    META_EWE = 0x108, ///< end of word at end         `x\>`
    // line and buffer boundaries
    META_BOL = 0x109, ///< begin of line              `^`
    META_EOL = 0x10a, ///< end of line                `$`
    META_BOB = 0x10b, ///< begin of buffer            `\A`
    META_EOB = 0x10c, ///< end of buffer              `\Z`
    // indent boundaries
    META_UND = 0x10d, ///< undent boundary            `\k`
    META_IND = 0x10e, ///< indent boundary            `\i` (must be one but the largest META code)
    META_DED = 0x10f, ///< dedent boundary            `\j` (must be the largest META code)
    // end of boundaries
    META_MAX          ///< max meta characters
  };
  /// Initialize the pattern at construction.
  void init(
      const char    *options,
      const uint8_t *pred = NULL);
  void init_options(const char *options);
  void parse(
      Positions& startpos,
      Follow&    followpos,
      Lazypos&   lazypos,
      Mods       modifiers,
      Map&       lookahead);
  void parse1(
      bool       begin,
      Location&  loc,
      Positions& firstpos,
      Positions& lastpos,
      bool&      nullable,
      Follow&    followpos,
      Lazy&      lazyidx,
      Lazypos&   lazypos,
      Mods       modifiers,
      Locations& lookahead,
      Iter&      iter);
  void parse2(
      bool       begin,
      Location&  loc,
      Positions& firstpos,
      Positions& lastpos,
      bool&      nullable,
      Follow&    followpos,
      Lazy&      lazyidx,
      Lazypos&   lazypos,
      Mods       modifiers,
      Locations& lookahead,
      Iter&      iter);
  void parse3(
      bool       begin,
      Location&  loc,
      Positions& firstpos,
      Positions& lastpos,
      bool&      nullable,
      Follow&    followpos,
      Lazy&      lazyidx,
      Lazypos&   lazypos,
      Mods       modifiers,
      Locations& lookahead,
      Iter&      iter);
  void parse4(
      bool       begin,
      Location&  loc,
      Positions& firstpos,
      Positions& lastpos,
      bool&      nullable,
      Follow&    followpos,
      Lazy&      lazyidx,
      Lazypos&   lazypos,
      Mods       modifiers,
      Locations& lookahead,
      Iter&      iter);
  Char parse_esc(
      Location& loc,
      Chars    *chars = NULL) const;
  void compile(
      DFA::State *start,
      Follow&     followpos,
      const Lazypos& lazypos,
      const Mods  modifiers,
      const Map&  lookahead);
  void lazy(
      const Lazypos& lazypos,
      Positions&     pos) const;
  void lazy(
      const Lazypos&   lazypos,
      const Positions& pos,
      Positions&       pos1) const;
  void greedy(Positions& pos) const;
  void trim_anchors(Positions& follow) const;
  void trim_lazy(Positions *pos, const Lazypos& lazypos) const;
  void compile_transition(
      DFA::State *state,
      Follow&     followpos,
      const Lazypos& lazypos,
      const Mods  modifiers,
      const Map&  lookahead,
      Moves&      moves) const;
  void transition(
      Moves&           moves,
      Chars&           chars,
      const Positions& follow) const;
  void compile_list(
      Location    loc,
      Chars&      chars,
      const Mods  modifiers) const;
  void posix(
      size_t index,
      Chars& chars) const;
  void flip(Chars& chars) const;
  void assemble(DFA::State *start);
  void compact_dfa(DFA::State *start);
  void encode_dfa(DFA::State *start);
  void gencode_dfa(const DFA::State *start) const;
  void check_dfa_closure(
      const DFA::State *state,
      int               nest,
      bool&             peek) const;
  void gencode_dfa_closure(
      FILE             *fd,
      const DFA::State *start,
      int               nest,
      bool              peek) const;
  void graph_dfa(const DFA::State *start) const;
  void export_code() const;
  void analyze_dfa(DFA::State *start);
  void gen_min(std::set<DFA::State*>& states);
  void gen_predict_match(std::set<DFA::State*>& states);
  void gen_predict_match_start(std::set<DFA::State*>& states, std::map<DFA::State*,std::pair<ORanges<Hash>,ORanges<Char> > >& first_hashes);
  void gen_predict_match_transitions(size_t level, DFA::State *state, const std::pair<ORanges<Hash>,ORanges<Char> >& previous, std::map<DFA::State*,std::pair<ORanges<Hash>,ORanges<Char> > >& level_hashes);
  void gen_match_hfa(DFA::State *start);
  void gen_match_hfa_start(DFA::State *start, HFA::State& index, HFA::StateHashes& hashes);
  bool gen_match_hfa_transitions(size_t level, size_t& max_level, DFA::State *state, const HFA::HashRanges& previous, HFA::State& index, HFA::StateHashes& hashes);
 public:
  bool has_hfa() const
  {
    return !hfa_.states.empty();
  }
  bool match_hfa(const uint8_t *indexed, size_t size) const;
 private:
  bool match_hfa_transitions(size_t level, const HFA::Hashes& hashes, const uint8_t *indexed, size_t size, HFA::VisitSet& visit, HFA::VisitSet& next_visit, bool& accept) const;
  void write_predictor(FILE *fd) const;
  void write_namespace_open(FILE *fd) const;
  void write_namespace_close(FILE *fd) const;
  size_t find_at(
      Location loc,
      char     c) const
  {
    return rex_.find_first_of(c, loc);
  }
  Char at(Location k) const
  {
    return static_cast<unsigned char>(rex_[k]);
  }
  bool eq_at(
      Location    loc,
      const char *s) const
  {
    return rex_.compare(loc, strlen(s), s) == 0;
  }
  Char escape_at(Location loc) const
  {
    if (at(loc) == opt_.e)
      return at(loc + 1);
    return '\0';
  }
  Char escapes_at(
      Location    loc,
      const char *escapes) const
  {
    if (at(loc) == opt_.e && std::strchr(escapes, at(loc + 1)))
      return at(loc + 1);
    return '\0';
  }
  static inline bool is_modified(
      Mod        mod,
      const Mods modifiers,
      Location   loc)
  {
    return modifiers[mod].find(loc) != modifiers[mod].end();
  }
  static inline void update_modified(
      Mod      mod,
      Mods     modifiers,
      Location from,
      Location to)
  {
    // modifiers i, m, s, u
    Locations modified(from, to);
    modified -= modifiers[mod ^ 1];
    modifiers[mod] += modified;
  }
  static inline uint16_t hash_pos(const Positions *pos)
  {
    uint16_t h = 0;
    for (Positions::const_iterator i = pos->begin(); i != pos->end(); ++i)
      h += h + static_cast<uint16_t>(*i ^ (*i >> 24));
    return h;
  }
  static inline bool valid_goto_index(Index index)
  {
    return index <= Const::GMAX;
  }
  static inline bool valid_take_index(Index index)
  {
    return index <= Const::AMAX;
  }
  static inline bool valid_lookahead_index(Index index)
  {
    return index <= Const::LMAX;
  }
  static inline bool is_meta(Char c)
  {
    return c > META_MIN;
  }
  static inline Opcode opcode_long(Index index)
  {
    return 0xff000000 | (index & 0xffffff); // index <= Const::GMAX (0xfeffff max)
  }
  static inline Opcode opcode_take(Index index)
  {
    return 0xfe000000 | (index & 0xffffff); // index <= Const::AMAX (0xfdffff max)
  }
  static inline Opcode opcode_redo()
  {
    return 0xfd000000;
  }
  static inline Opcode opcode_tail(Index index)
  {
    return 0xfc000000 | (index & 0xffffff); // index <= Const::LMAX (0xfaffff max)
  }
  static inline Opcode opcode_head(Index index)
  {
    return 0xfb000000 | (index & 0xffffff); // index <= Const::LMAX (0xfaffff max)
  }
  static inline Opcode opcode_goto(
      Char  lo,
      Char  hi,
      Index index)
  {
    return is_meta(lo) ? (static_cast<Opcode>(lo) << 24) | index : (static_cast<Opcode>(lo) << 24) | (hi << 16) | index;
  }
  static inline Opcode opcode_halt()
  {
    return 0x00ffffff;
  }
  static inline bool is_opcode_long(Opcode opcode)
  {
    return (opcode & 0xff000000) == 0xff000000;
  }
  static inline bool is_opcode_take(Opcode opcode)
  {
    return (opcode & 0xfe000000) == 0xfe000000;
  }
  static inline bool is_opcode_redo(Opcode opcode)
  {
    return opcode == 0xfd000000;
  }
  static inline bool is_opcode_tail(Opcode opcode)
  {
    return (opcode & 0xff000000) == 0xfc000000;
  }
  static inline bool is_opcode_head(Opcode opcode)
  {
    return (opcode & 0xff000000) == 0xfb000000;
  }
  static inline bool is_opcode_halt(Opcode opcode)
  {
    return opcode == 0x00ffffff;
  }
  static inline bool is_opcode_goto(Opcode opcode)
  {
    return (opcode << 8) >= (opcode & 0xff000000);
  }
  static inline bool is_opcode_meta(Opcode opcode)
  {
    return (opcode & 0x00ff0000) == 0x00000000 && (opcode >> 24) > 0;
  }
  static inline bool is_opcode_goto(
      Opcode        opcode,
      unsigned char c)
  {
    return c >= (opcode >> 24) && c <= ((opcode >> 16) & 0xff);
  }
  static inline Char meta_of(Opcode opcode)
  {
    return META_MIN + (opcode >> 24);
  }
  static inline Char lo_of(Opcode opcode)
  {
    return is_opcode_meta(opcode) ? meta_of(opcode) : opcode >> 24;
  }
  static inline Char hi_of(Opcode opcode)
  {
    return is_opcode_meta(opcode) ? meta_of(opcode) : (opcode >> 16) & 0xff;
  }
  static inline Index index_of(Opcode opcode)
  {
    return opcode & 0xffff;
  }
  static inline Index long_index_of(Opcode opcode)
  {
    return opcode & 0xffffff;
  }
  static inline Lookahead lookahead_of(Opcode opcode)
  {
    return opcode & 0xffff;
  }
  /// check if lower case
  static inline bool islowercase(Char c)
  {
    return (c >= 'a' && c <= 'z');
  }
  /// check if upper case
  static inline bool isuppercase(Char c)
  {
    return (c >= 'A' && c <= 'Z');
  }
  /// check if lower or upper case
  static inline bool isanycase(Char c)
  {
    return islowercase(c) || isuppercase(c);
  }
  /// convert to lower case if c is a letter a-z, A-Z.
  static inline Char lowercase(Char c)
  {
    return static_cast<unsigned char>(c | 0x20);
  }
  /// convert to upper case if c is a letter a-z, A-Z.
  static inline Char uppercase(Char c)
  {
    return static_cast<unsigned char>(c & ~0x20);
  }
  /// predict match hash 0 <= hash() < Const::HASH.
  static inline uint32_t hash(uint32_t h, uint8_t b)
  {
    return ((h << 3) ^ b) & (Const::HASH - 1);
  }
  /// bitap character pairs hash
  static inline uint32_t bihash(uint8_t a, uint8_t b)
  {
    return (a ^ (b << 6)) & (Const::BTAP - 1);
  }
  /// file indexing hash 0 <= indexhash() < 65536, must be additive: indexhash(x,b+1) = indexhash(x,b)+1 modulo 2^16.
  static inline uint32_t indexhash(Hash h, uint8_t b)
  {
    return static_cast<uint16_t>((h << 6) - h - h - h + b);
  }
  Option                opt_; ///< pattern compiler options
  HFA                   hfa_; ///< indexing hash finite state automaton
#ifdef WITH_TREE_DFA
  DFA                   tfa_; ///< tree DFA constructed from strings
#else
  Tree                  tfa_; ///< tree DFA constructed from strings
#endif
  DFA                   dfa_; ///< DFA constructed from regex with subset construction using firstpos/lastpos/followpos
  std::string           rex_; ///< regular expression string
  std::vector<Location> end_; ///< entries point to the subpattern's ending '|' or '\0'
  std::vector<bool>     acc_; ///< true if subpattern n is accepting (state is reachable)
  size_t                vno_; ///< number of finite state machine vertices |V| (nodes)
  size_t                eno_; ///< number of finite state machine edges |E| (arrows)
  size_t                hno_; ///< number of indexing hash tables (HFA edges)
  const Opcode         *opc_; ///< points to the table with compiled finite state machine opcodes
  FSM                   fsm_; ///< function pointer to FSM code
  Index                 nop_; ///< number of opcodes generated
  Index                 cut_; ///< DFA s-t cut to improve predict match and HFA accuracy with lbk_ and cbk_
  size_t                len_; ///< length of chr_[], less or equal to 255
  size_t                min_; ///< patterns after the prefix are at least this long but no more than 8
  size_t                pin_; ///< number of needles, 0 to 16
  std::bitset<256>      cbk_; ///< characters to look back over when lbk_ > 0, never includes \n
  std::bitset<256>      fst_; ///< the beginning characters of the pattern
  char                  chr_[256]; ///< pattern prefix string or character needles for needle-based search
  Bitap                 bit_[256]; ///< bitsets of characters for the first positions (one position per bit)
  Bitap                 tap_[Const::BTAP]; ///< bitap hashed character pairs array
#ifdef WITH_BITAP_AVX2 // in case vectorized bitap (hashed) is faster than serial version (typically not!)
#if defined(HAVE_AVX512BW) || defined(HAVE_AVX2) || defined(HAVE_SSE2)
  uint16_t              vtp_[Const::BTAP * 4]; ///< AVX2 vectorized bitap hashed character pairs array
#endif
#endif
  Pred                  pmh_[Const::HASH]; ///< predict-match bloom filter hash up to first 8 positions
  Pred                  pma_[Const::HASH]; ///< predict-match 4 (PM4) array
  uint16_t              lbk_; ///< lookback distance or 0xffff unlimited lookback or 0 for no lookback (empty cbk_)
  uint16_t              lbm_; ///< loopback minimum distance when lbk_ > 0
  uint16_t              lcp_; ///< primary least common character position in the pattern or 0xffff
  uint16_t              lcs_; ///< secondary least common character position in the pattern or 0xffff
  size_t                bmd_; ///< Boyer-Moore jump distance on mismatch, B-M is enabled when bmd_ > 0 (<= 255)
  uint8_t               bms_[256]; ///< Boyer-Moore skip array
  float                 pms_; ///< ms elapsed time to parse regex
  float                 vms_; ///< ms elapsed time to compile DFA vertices
  float                 ems_; ///< ms elapsed time to compile DFA edges
  float                 wms_; ///< ms elapsed time to assemble code words
  float                 ams_; ///< ms elapsed time to analyze DFA for predict match and HFA
  uint16_t              npy_; ///< entropy derived from the bitap array bit_[]
  bool                  one_; ///< true if matching one string stored in chr_[] without meta/anchors
  bool                  bol_; ///< true if matching all patterns at the begin of a line with anchor ^
};

} // namespace reflex

#endif