1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
//
// Copyright 2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
`include "axi_defs.v"
`define DEBUG if (1)
module axi_dma_master
(
input aclk, // Global AXI clock
input areset, // Global AXI reset
//
// AXI Write address channel
//
output [0 : 0] m_axi_awid, // Write address ID. This signal is the identification tag for the write address signals
output reg [31 : 0] m_axi_awaddr, // Write address. The write address gives the address of the first transfer in a write burst
output reg [7 : 0] m_axi_awlen, // Burst length. The burst length gives the exact number of transfers in a burst.
output [2 : 0] m_axi_awsize, // Burst size. This signal indicates the size of each transfer in the burst.
output [1 : 0] m_axi_awburst, // Burst type. The burst type and the size information, determine how the address is calculated
output [0 : 0] m_axi_awlock, // Lock type. Provides additional information about the atomic characteristics of the transfer.
output [3 : 0] m_axi_awcache, // Memory type. This signal indicates how transactions are required to progress
output [2 : 0] m_axi_awprot, // Protection type. This signal indicates the privilege and security level of the transaction
output [3 : 0] m_axi_awqos, // Quality of Service, QoS. The QoS identifier sent for each write transaction
output [3 : 0] m_axi_awregion, // Region identifier. Permits a single physical interface on a slave to be re-used.
output [0 : 0] m_axi_awuser, // User signal. Optional User-defined signal in the write address channel.
output reg m_axi_awvalid, // Write address valid. This signal indicates that the channel is signaling valid write addr
input m_axi_awready, // Write address ready. This signal indicates that the slave is ready to accept an address
//
// AXI Write data channel.
//
output [63 : 0] m_axi_wdata, // Write data
output [7 : 0] m_axi_wstrb, // Write strobes. This signal indicates which byte lanes hold valid data.
output reg m_axi_wlast, // Write last. This signal indicates the last transfer in a write burst
output m_axi_wuser, // User signal. Optional User-defined signal in the write data channel.
output m_axi_wvalid, // Write valid. This signal indicates that valid write data and strobes are available.
input m_axi_wready, // Write ready. This signal indicates that the slave can accept the write data.
//
// AXI Write response channel signals
//
input [0 : 0] m_axi_bid, // Response ID tag. This signal is the ID tag of the write response.
input [1 : 0] m_axi_bresp, // Write response. This signal indicates the status of the write transaction.
input [0 : 0] m_axi_buser, // User signal. Optional User-defined signal in the write response channel.
input m_axi_bvalid, // Write response valid. This signal indicates that the channel is signaling a valid response
output reg m_axi_bready, // Response ready. This signal indicates that the master can accept a write response
//
// AXI Read address channel
//
output [0 : 0] m_axi_arid, // Read address ID. This signal is the identification tag for the read address group of signals
output reg [31 : 0] m_axi_araddr, // Read address. The read address gives the address of the first transfer in a read burst
output reg [7 : 0] m_axi_arlen, // Burst length. This signal indicates the exact number of transfers in a burst.
output [2 : 0] m_axi_arsize, // Burst size. This signal indicates the size of each transfer in the burst.
output [1 : 0] m_axi_arburst, // Burst type. The burst type and the size information determine how the address for each transfer
output [0 : 0] m_axi_arlock, // Lock type. This signal provides additional information about the atomic characteristics
output [3 : 0] m_axi_arcache, // Memory type. This signal indicates how transactions are required to progress
output [2 : 0] m_axi_arprot, // Protection type. This signal indicates the privilege and security level of the transaction
output [3 : 0] m_axi_arqos, // Quality of Service, QoS. QoS identifier sent for each read transaction.
output [3 : 0] m_axi_arregion, // Region identifier. Permits a single physical interface on a slave to be re-used
output [0 : 0] m_axi_aruser, // User signal. Optional User-defined signal in the read address channel.
output reg m_axi_arvalid, // Read address valid. This signal indicates that the channel is signaling valid read addr
input m_axi_arready, // Read address ready. This signal indicates that the slave is ready to accept an address
//
// AXI Read data channel
//
input [0 : 0] m_axi_rid, // Read ID tag. This signal is the identification tag for the read data group of signals
input [63 : 0] m_axi_rdata, // Read data.
input [1 : 0] m_axi_rresp, // Read response. This signal indicates the status of the read transfer
input m_axi_rlast, // Read last. This signal indicates the last transfer in a read burst.
input [0 : 0] m_axi_ruser, // User signal. Optional User-defined signal in the read data channel.
input m_axi_rvalid, // Read valid. This signal indicates that the channel is signaling the required read data.
output m_axi_rready, // Read ready. This signal indicates that the master can accept the read data and response
//
// DMA interface for Write transaction
//
input [31:0] write_addr, // Byte address for start of write transaction (should be 64bit alligned)
input [7:0] write_count, // Count of 64bit words to write. (minus one)
input write_ctrl_valid,
output reg write_ctrl_ready,
input [63:0] write_data,
input write_data_valid,
output write_data_ready,
//
// DMA interface for Read
//
input [31:0] read_addr, // Byte address for start of read transaction (should be 64bit alligned)
input [7:0] read_count, // Count of 64bit words to read.
input read_ctrl_valid,
output reg read_ctrl_ready,
output [63:0] read_data,
output read_data_valid,
input read_data_ready,
//
// Debug Bus
//
output [31:0] debug
);
localparam AW_IDLE = 0;
localparam WAIT_AWREADY = 1;
localparam WAIT_BVALID = 2;
localparam AW_ERROR = 3;
reg [1:0] write_addr_state;
reg [7:0] write_data_count; // Count write transfers.
reg enable_data_write;
localparam DW_IDLE = 0;
localparam DW_RUN = 1;
localparam DW_LAST = 2;
reg [1:0] write_data_state;
localparam AR_IDLE = 0;
localparam WAIT_ARREADY = 1;
localparam WAIT_READ_DONE = 2;
localparam AR_ERROR = 3;
reg [1:0] read_addr_state;
localparam DR_IDLE = 0;
localparam DR_RUN = 1;
localparam DR_WAIT_ERROR = 2;
localparam DR_ERROR = 3;
reg [1:0] read_data_state;
reg [7:0] read_data_count;
reg enable_data_read;
///////////////////////////
// DEBUG
///////////////////////////
assign debug= {24'h0,write_addr_state[1:0],write_data_state[1:0],read_addr_state[1:0],read_data_state[1:0]};
//
//
//
/////////////////////////////////////////////////////////////////////////////////
//
// AXI Write address channel
//
/////////////////////////////////////////////////////////////////////////////////
assign m_axi_awid = 1'b0;
assign m_axi_awsize = 3'h3; // 8 bytes.
assign m_axi_awburst = `AXI4_BURST_INCR;
assign m_axi_awlock = `AXI4_LOCK_NORMAL;
assign m_axi_awcache = `AXI4_CACHE_ALLOCATE | `AXI4_CACHE_OTHER_ALLOCATE | `AXI4_CACHE_MODIFIABLE | `AXI4_CACHE_BUFFERABLE;
assign m_axi_awprot = `AXI4_PROT_NON_SECURE;
assign m_axi_awqos = 4'h0;
assign m_axi_awregion = 4'h0;
assign m_axi_awuser = 1'b0;
//
// AXI Write address state machine
//
always @(posedge aclk)
if (areset) begin
write_ctrl_ready <= 1'b0;
write_addr_state <= AW_IDLE;
m_axi_awaddr[31:0] <= 32'h0;
m_axi_awlen[7:0] <= 8'h0;
m_axi_awvalid <= 1'b0;
m_axi_bready <= 1'b0;
end else
case (write_addr_state)
//
// AW_IDLE
// We are ready to accept a new write transaction.
//
AW_IDLE: begin
// Premptively accept new write transaction since we are idle.
write_ctrl_ready <= 1'b1;
// No need to be waiting for a response while idle.
m_axi_bready <= 1'b0;
// If we are offered a new transaction then.....
if (write_ctrl_valid) begin
// Drive all the relevent AXI4 write address channel signals next cycle.
m_axi_awaddr[31:0] <= write_addr[31:0];
m_axi_awlen[7:0] <= {write_count};
m_axi_awvalid <= 1'b1;
// If the AXI4 write channel is pre-emptively accepting the transaction...
if (m_axi_awready == 1'b1) begin
// ...go straight to looking for a transaction response...
`DEBUG $display("WRITE TRANSACTION: ADDR: %x LEN: %x @ time %d",write_addr[31:0],write_count,$time);
write_addr_state <= WAIT_BVALID;
m_axi_bready <= 1'b1;
end else begin
// ...otherwise wait to get the transaction accepted.
write_addr_state <= WAIT_AWREADY;
end
end
end
//
// WAIT_AWREADY
// Waiting for AXI4 slave to accept new write transaction.
//
WAIT_AWREADY: begin
write_ctrl_ready <= 1'b0;
// If the AXI4 write channel is accepting the transaction...
if (m_axi_awready == 1'b1) begin
// ...go to looking for a transaction response...
write_addr_state <= WAIT_BVALID;
m_axi_bready <= 1'b1;
`DEBUG $display("WRITE TRANSACTION: ADDR: %x LEN: %x @ time %d",m_axi_awaddr[31:0],m_axi_awlen[7:0],$time);
end else begin
// ...otherwise wait to get the trasaction accepted.
write_addr_state <= WAIT_AWREADY;
end
end // case: WAIT_AWREADY
//
// WAIT_BVALID
// Write transaction has been accepted, now waiting for a response to signal it's sucsesful.
// Ignoring ID tag for the moment
//
WAIT_BVALID: begin
write_ctrl_ready <= 1'b0;
m_axi_awvalid <= 1'b0;
// Wait for response channel to signal how write transaction went down....
if (m_axi_bvalid == 1'b1) begin
if ((m_axi_bresp == `AXI4_RESP_OKAY) || (m_axi_bresp == `AXI4_RESP_EXOKAY)) begin
// ....it went well, we are ready to start something new.
write_addr_state <= AW_IDLE;
m_axi_bready <= 1'b0;
write_ctrl_ready <= 1'b1; // Ready to run again as soon as we hit idle.
end else if ((m_axi_bresp == `AXI4_RESP_SLVERR) || (m_axi_bresp == `AXI4_RESP_DECERR)) begin
// ....things got ugly, retreat to an error stat and wait for intervention.
write_addr_state <= AW_ERROR;
m_axi_bready <= 1'b0;
end
end else begin
write_addr_state <= WAIT_BVALID;
m_axi_bready <= 1'b1;
end
end // case: WAIT_BVALID
//
// AW_ERROR
// Something bad happened, going to need external intervention to restore a safe state.
//
AW_ERROR: begin
write_ctrl_ready <= 1'b0;
write_addr_state <= AW_ERROR;
m_axi_awaddr[31:0] <= 32'h0;
m_axi_awlen[7:0] <= 8'h0;
m_axi_awvalid <= 1'b0;
m_axi_bready <= 1'b0;
end
endcase // case(write_addr_state)
/////////////////////////////////////////////////////////////////////////////////
//
// AXI Write data channel
//
/////////////////////////////////////////////////////////////////////////////////
assign m_axi_wstrb = 8'hff;
assign m_axi_wuser = 1'b0;
//
// AXI Write data state machine
//
always @(posedge aclk)
if (areset) begin
write_data_state <= AW_IDLE;
write_data_count <= 1;
enable_data_write <= 1'b0;
m_axi_wlast <= 1'b0;
end else
case (write_data_state)
//
// DW_IDLE
// Sit in this state until presented with the control details of a new write transaction.
//
DW_IDLE: begin
write_data_count <= 1;
m_axi_wlast <= 1'b0;
if (write_ctrl_valid && write_ctrl_ready) begin
enable_data_write <= 1'b1;
if (write_count[7:0] == 8'h0) begin
// Single transfer transaction
write_data_state <= DW_LAST;
m_axi_wlast <= 1'b1;
end else begin
write_data_state <= DW_RUN;
end
end else begin
write_data_state <= DW_IDLE;
end
end
//
// DW_RUN
//
DW_RUN : begin
enable_data_write <= 1'b1;
m_axi_wlast <= 1'b0;
if (write_data_valid && m_axi_wready) begin
// Single write transfer
write_data_count <= write_data_count + 1;
if (write_data_count == m_axi_awlen[7:0]) begin
write_data_state <= DW_LAST;
m_axi_wlast <= 1'b1;
end else begin
write_data_state <= DW_RUN;
end
end else begin
write_data_state <= DW_RUN;
end
end
//
// DW_LAST
//
DW_LAST: begin
if (write_data_valid && m_axi_wready) begin
enable_data_write <= 1'b0;
write_data_state <= DW_IDLE;
m_axi_wlast <= 1'b0;
end else begin
enable_data_write <= 1'b1;
write_data_state <= DW_LAST;
m_axi_wlast <= 1'b1;
end
end // case: DW_LAST
//
default:
write_data_state <= DW_IDLE;
endcase // case(write_data_state)
assign m_axi_wdata = write_data;
assign m_axi_wvalid = enable_data_write && write_data_valid;
assign write_data_ready = enable_data_write && m_axi_wready;
/////////////////////////////////////////////////////////////////////////////////
//
// AXI Read address channel
//
/////////////////////////////////////////////////////////////////////////////////
assign m_axi_arid = 1'b0;
assign m_axi_arsize = 3'h3; // 8 bytes
assign m_axi_arburst = `AXI4_BURST_INCR;
assign m_axi_arlock = `AXI4_LOCK_NORMAL;
assign m_axi_arcache = `AXI4_CACHE_ALLOCATE | `AXI4_CACHE_OTHER_ALLOCATE | `AXI4_CACHE_MODIFIABLE | `AXI4_CACHE_BUFFERABLE;
assign m_axi_arprot = `AXI4_PROT_NON_SECURE;
assign m_axi_arqos = 4'h0;
assign m_axi_arregion = 4'h0;
assign m_axi_aruser = 1'b0;
//
// AXI Read address state machine
//
always @(posedge aclk)
if (areset) begin
read_ctrl_ready <= 1'b0;
read_addr_state <= AR_IDLE;
m_axi_araddr[31:0] <= 32'h0;
m_axi_arlen[7:0] <= 8'h0;
m_axi_arvalid <= 1'b0;
end else
case (read_addr_state)
//
// AR_IDLE
// We are ready to accept a new read transaction.
//
AR_IDLE: begin
// Premptively accept new read transaction since we are idle.
read_ctrl_ready <= 1'b1;
// If we are offered a new transaction then.....
if (read_ctrl_valid) begin
// Drive all the relevent AXI4 read address channel signals next cycle.
m_axi_araddr[31:0] <= read_addr[31:0];
m_axi_arlen[7:0] <= {read_count};
m_axi_arvalid <= 1'b1;
// If the AXI4 read channel is pre-emptively accepting the transaction...
if (m_axi_arready == 1'b1) begin
// ...go straight to looking for the transaction to complete
`DEBUG $display("READ TRANSACTION: ADDR: %x LEN: %x @ time %d",read_addr[31:0],read_count,$time);
read_addr_state <= WAIT_READ_DONE;
end else begin
// ...otherwise wait to get the transaction accepted.
read_addr_state <= WAIT_ARREADY;
end
end
end
//
// WAIT_ARREADY
// Waiting for AXI4 slave to accept new read transaction.
//
WAIT_ARREADY: begin
read_ctrl_ready <= 1'b0;
// If the AXI4 read channel is accepting the transaction...
if (m_axi_arready == 1'b1) begin
// ...go to looking for the transaction to complete...
read_addr_state <= WAIT_READ_DONE;
`DEBUG $display("READ TRANSACTION: ADDR: %x LEN: %x @ time %d",m_axi_araddr[31:0],m_axi_arlen[7:0],$time);
end else begin
// ...otherwise wait to get the trasaction accepted.
read_addr_state <= WAIT_ARREADY;
end
end // case: WAIT_ARREADY
//
// WAIT_READ_DONE
// Read transaction has been accepted, now waiting for the data transfer to complete
// Ignoring ID tag for the moment
//
WAIT_READ_DONE: begin
read_ctrl_ready <= 1'b0;
m_axi_arvalid <= 1'b0;
// Wait for read transaction to complete
if (read_data_state == DR_IDLE) begin
// ....it went well, we are ready to start something new.
read_addr_state <= AR_IDLE;
read_ctrl_ready <= 1'b1; // Ready to run again as soon as we hit idle.
end else if (read_data_state == DR_ERROR) begin
// ....things got ugly, retreat to an error stat and wait for intervention.
read_addr_state <= AR_ERROR;
end else begin
read_addr_state <= WAIT_READ_DONE;
end
end // case: WAIT_BVALID
//
// AR_ERROR
// Something bad happened, going to need external intervention to restore a safe state.
//
AR_ERROR: begin
read_ctrl_ready <= 1'b0;
read_addr_state <= AR_ERROR;
m_axi_araddr[31:0] <= 32'h0;
m_axi_arlen[7:0] <= 8'h0;
m_axi_arvalid <= 1'b0;
end
endcase // case(read_addr_state)
/////////////////////////////////////////////////////////////////////////////////
//
// AXI Read data channel
//
/////////////////////////////////////////////////////////////////////////////////
//
// AXI Read data state machine
//
always @(posedge aclk)
if (areset) begin
read_data_state <= AR_IDLE;
read_data_count <= 0;
enable_data_read <= 1'b0;
end else
case (read_data_state)
//
// DR_IDLE
// Sit in this state until presented with the control details of a new read transaction.
//
DR_IDLE: begin
read_data_count <= 0;
if (read_ctrl_valid && read_ctrl_ready) begin
enable_data_read <= 1'b1;
read_data_state <= DR_RUN;
end else begin
read_data_state <= DR_IDLE;
end
end
//
// DR_RUN
// Sit here counting read transfers. If any have error's shift to error state.
//
DR_RUN : begin
enable_data_read <= 1'b1;
if (read_data_ready && m_axi_rvalid) begin
// Single read transfer
read_data_count <= read_data_count + 1;
if ((m_axi_rresp == `AXI4_RESP_SLVERR) || (m_axi_rresp == `AXI4_RESP_DECERR)) begin
if (m_axi_rlast) begin
read_data_state <= DR_ERROR;
end else begin
read_data_state <= DR_WAIT_ERROR;
end
end else if (m_axi_rlast) begin // Implicitly good response signalled this transfer.
if (read_data_count == m_axi_arlen[7:0]) begin
read_data_state <= DR_IDLE;
end else begin
read_data_state <= DR_ERROR;
end
end else begin
read_data_state <= DR_RUN;
end
end else begin
read_data_state <= DR_RUN;
end
end
//
// DR_WAIT_ERROR
// Something bad happened, wait for last signalled in this burst
//
DR_WAIT_ERROR: begin
if (read_data_ready && m_axi_rvalid && m_axi_rlast) begin
enable_data_read <= 1'b0;
read_data_state <= DR_ERROR;
end else begin
enable_data_read <= 1'b1;
read_data_state <= DR_WAIT_ERROR;
end
end // case: DR_WAIT_ERROR
//
// DR_ERROR
// Something bad happened, going to need external intervention to restore a safe state.
//
DR_ERROR: begin
enable_data_read <= 1'b0;
read_data_state <= DR_ERROR;
end // case: DR_ERROR
endcase // case(read_data_state)
assign read_data = m_axi_rdata;
assign m_axi_rready = enable_data_read && read_data_ready;
assign read_data_valid = enable_data_read && m_axi_rvalid;
endmodule // axi_dma_master
|