1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
|
//
// Copyright 2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0
//
// Module: axi_replay.v
// Description:
//
// This block implements the state machine and control logic for recording and
// playback of AXI-Stream data, using a DMA-accessible memory as a buffer.
module axi_replay #(
parameter DATA_WIDTH = 64,
parameter ADDR_WIDTH = 32, // Byte address width used by DMA master
parameter COUNT_WIDTH = 8 // Length of counters used to connect to the DMA
// master's read and write interfaces.
) (
input wire clk,
input wire rst, // Synchronous to clk
//---------------------------------------------------------------------------
// Settings Bus
//---------------------------------------------------------------------------
input wire set_stb,
input wire [ 7:0] set_addr,
input wire [31:0] set_data,
output reg [31:0] rb_data,
input wire [ 7:0] rb_addr,
//---------------------------------------------------------------------------
// AXI Stream Interface
//---------------------------------------------------------------------------
// Input
input wire [DATA_WIDTH-1:0] i_tdata,
input wire i_tvalid,
input wire i_tlast,
output wire i_tready,
// Output
output wire [DATA_WIDTH-1:0] o_tdata,
output wire o_tvalid,
output wire o_tlast,
input wire o_tready,
//---------------------------------------------------------------------------
// DMA Interface
//---------------------------------------------------------------------------
// Write interface
output reg [ ADDR_WIDTH-1:0] write_addr, // Byte address for start of write
// transaction (64-bit aligned).
output reg [COUNT_WIDTH-1:0] write_count, // Count of 64-bit words to write, minus 1.
output reg write_ctrl_valid,
input wire write_ctrl_ready,
output wire [ DATA_WIDTH-1:0] write_data,
output wire write_data_valid,
input wire write_data_ready,
// Read interface
output reg [ ADDR_WIDTH-1:0] read_addr, // Byte address for start of read
// transaction (64-bit aligned).
output reg [COUNT_WIDTH-1:0] read_count, // Count of 64-bit words to read, minus 1.
output reg read_ctrl_valid,
input wire read_ctrl_ready,
input wire [ DATA_WIDTH-1:0] read_data,
input wire read_data_valid,
output wire read_data_ready
);
//---------------------------------------------------------------------------
// Constants
//---------------------------------------------------------------------------
// Size constants
localparam CMD_WIDTH = 32; // Command width
localparam LINES_WIDTH = 28; // Width of cmd_num_lines
localparam WORD_SIZE = DATA_WIDTH/8; // Size of DATA_WIDTH in bytes
// Register offsets
localparam [7:0] SR_REC_BASE_ADDR = 128;
localparam [7:0] SR_REC_BUFFER_SIZE = 129;
localparam [7:0] SR_REC_RESTART = 130;
localparam [7:0] SR_REC_FULLNESS = 131;
localparam [7:0] SR_PLAY_BASE_ADDR = 132;
localparam [7:0] SR_PLAY_BUFFER_SIZE = 133;
localparam [7:0] SR_RX_CTRL_COMMAND = 152; // Same offset as radio
localparam [7:0] SR_RX_CTRL_HALT = 155; // Same offset as radio
localparam [7:0] SR_RX_CTRL_MAXLEN = 156; // Same offset as radio
// Memory buffering parameters:
//
// Log base 2 of the depth of the input and output FIFOs to use. The FIFOs
// should be large enough to store more than a complete burst
// (MEM_BURST_SIZE). A size of 9 (512 64-bit words) is one 36-kbit BRAM.
localparam REC_FIFO_ADDR_WIDTH = 9; // Log2 of input/record FIFO size
localparam PLAY_FIFO_ADDR_WIDTH = 9; // Log2 of output/playback FIFO size
//
// Amount of data to buffer before writing to RAM. This should be a power of
// two so that it evenly divides the AXI_ALIGNMENT requirement. It also must
// not exceed 2**COUNT_WIDTH (the maximum count allowed by DMA master).
localparam MEM_BURST_SIZE = 2**COUNT_WIDTH; // Size in DATA_WIDTH-sized words
//
// AXI alignment requirement (4096 bytes) in DATA_WIDTH-bit words
localparam AXI_ALIGNMENT = 4096 / WORD_SIZE;
//
// Clock cycles to wait before writing something less than MEM_BURST_SIZE
// to memory.
localparam DATA_WAIT_TIMEOUT = 31;
//---------------------------------------------------------------------------
// Signals
//---------------------------------------------------------------------------
// Command wires
wire cmd_send_imm_cf, cmd_chain_cf, cmd_reload_cf, cmd_stop_cf;
wire [LINES_WIDTH-1:0] cmd_num_lines_cf;
// Settings registers signals
wire [ ADDR_WIDTH-1:0] rec_base_addr_sr; // Byte address
wire [ ADDR_WIDTH-1:0] rec_buffer_size_sr; // Size in bytes
wire [ ADDR_WIDTH-1:0] play_base_addr_sr; // Byte address
wire [ ADDR_WIDTH-1:0] play_buffer_size_sr; // Size in bytes
reg rec_restart;
reg rec_restart_clear;
wire [ CMD_WIDTH-1:0] command;
wire command_valid;
reg play_halt;
reg play_halt_clear;
wire [COUNT_WIDTH:0] play_max_len_sr;
// Command FIFO
wire cmd_fifo_valid;
reg cmd_fifo_ready;
// Record Data FIFO (Input)
wire [DATA_WIDTH-1:0] rec_fifo_o_tdata;
wire rec_fifo_o_tvalid;
wire rec_fifo_o_tready;
wire [ 15:0] rec_fifo_occupied;
// Playback Data FIFO (Output)
wire [DATA_WIDTH-1:0] play_fifo_i_tdata;
wire play_fifo_i_tvalid;
wire play_fifo_i_tready;
wire [ 15:0] play_fifo_space; // Free space in play_axi_fifo
// Buffer usage registers
reg [ADDR_WIDTH-1:0] rec_buffer_avail; // Amount of free buffer space in words
reg [ADDR_WIDTH-1:0] rec_buffer_used; // Amount of occupied buffer space in words
//---------------------------------------------------------------------------
// Registers
//---------------------------------------------------------------------------
// Record Base Address Register. Address is a byte address. This must be a
// multiple of 8 bytes.
setting_reg #(
.my_addr (SR_REC_BASE_ADDR),
.width (ADDR_WIDTH)
) sr_rec_base_addr (
.clk (clk),
.rst (rst),
.strobe (set_stb),
.addr (set_addr),
.in (set_data),
.out (rec_base_addr_sr),
.changed ()
);
// Record Buffer Size Register. This indicates the portion of the RAM
// allocated to the record buffer, in bytes. This should be a multiple of 8
// bytes.
setting_reg #(
.my_addr (SR_REC_BUFFER_SIZE),
.width (ADDR_WIDTH)
) sr_rec_buffer_size (
.clk (clk),
.rst (rst),
.strobe (set_stb),
.addr (set_addr),
.in (set_data),
.out (rec_buffer_size_sr),
.changed ()
);
// Playback Base Address Register. Address is a byte address. This must be a
// multiple of the 8 bytes.
setting_reg #(
.my_addr (SR_PLAY_BASE_ADDR),
.width (ADDR_WIDTH)
) sr_play_base_addr (
.clk (clk),
.rst (rst),
.strobe (set_stb),
.addr (set_addr),
.in (set_data),
.out (play_base_addr_sr),
.changed ()
);
// Playback Buffer Size Register. This indicates the portion of the RAM
// allocated to the record buffer, in bytes. This should be a multiple of 8
// bytes.
setting_reg #(
.my_addr (SR_PLAY_BUFFER_SIZE),
.width (ADDR_WIDTH)
) sr_play_buffer_size (
.clk (clk),
.rst (rst),
.strobe (set_stb),
.addr (set_addr),
.in (set_data),
.out (play_buffer_size_sr),
.changed ()
);
// Record Buffer Restart Register. Software must write to this register after
// updating the base address or buffer size. A write to this register means
// we need to stop any recording in progress and reset the record buffers
// according to the current buffer base address and size registers.
always @(posedge clk)
begin : sr_restart
if(rst) begin
rec_restart <= 1'b0;
end else begin
if(set_stb & (set_addr == SR_REC_RESTART)) begin
rec_restart <= 1'b1;
end else if (rec_restart_clear) begin
rec_restart <= 1'b0;
end
end
end
// Halt Register. A write to this register stops any replay operation as soon
// as the current DRAM transaction completes.
always @(posedge clk)
begin : sr_halt
if(rst) begin
play_halt <= 1'b0;
end else begin
if(set_stb & (set_addr == SR_RX_CTRL_HALT)) begin
play_halt <= 1'b1;
end else if (play_halt_clear) begin
play_halt <= 1'b0;
end
end
end
// Play Command Register
//
// This register mirrors the behavior of the RFNoC RX radio block. All
// commands are queued up in the replay command FIFO. The fields are as
// follows.
//
// send_imm [31] Send command immediately (don't use time).
//
// chain [30] When done with num_lines, immediately run next command.
//
// reload [29] When done with num_lines, rerun the same command if
// cmd_chain is set and no new command is available.
//
// stop [28] When done with num_lines, stop transferring if
// cmd_chain is set.
//
// num_lines [27:0] Number of samples to transfer to/from block.
//
setting_reg #(
.my_addr (SR_RX_CTRL_COMMAND),
.width (CMD_WIDTH)
) sr_command (
.clk (clk),
.rst (rst),
.strobe (set_stb),
.addr (set_addr),
.in (set_data),
.out (command),
.changed (command_valid)
);
// Max Length Register. This register sets the number of words for the
// maximum packet size.
setting_reg #(
.my_addr (SR_RX_CTRL_MAXLEN),
.width (COUNT_WIDTH+1),
.at_reset({1'b1, {COUNT_WIDTH{1'b0}}})
) sr_max_len (
.clk (clk),
.rst (rst),
.strobe (set_stb),
.addr (set_addr),
.in (set_data),
.out (play_max_len_sr),
.changed ()
);
// Implement register read
always @(*) begin
case (rb_addr)
SR_REC_BASE_ADDR : rb_data = rec_base_addr_sr;
SR_REC_BUFFER_SIZE : rb_data = rec_buffer_size_sr;
SR_REC_FULLNESS : rb_data = rec_buffer_used * WORD_SIZE;
SR_PLAY_BASE_ADDR : rb_data = play_base_addr_sr;
SR_PLAY_BUFFER_SIZE : rb_data = play_buffer_size_sr;
SR_RX_CTRL_MAXLEN : rb_data = play_max_len_sr;
default : rb_data = 32'h0;
endcase
end
//---------------------------------------------------------------------------
// Playback Command FIFO
//---------------------------------------------------------------------------
//
// This block queues up commands for playback control.
//
//---------------------------------------------------------------------------
axi_fifo_short #(
.WIDTH (CMD_WIDTH)
) command_fifo (
.clk (clk),
.reset (rst),
.clear (play_halt_clear),
.i_tdata (command),
.i_tvalid (command_valid),
.i_tready (),
.o_tdata ({cmd_send_imm_cf, cmd_chain_cf, cmd_reload_cf, cmd_stop_cf, cmd_num_lines_cf}),
.o_tvalid (cmd_fifo_valid),
.o_tready (cmd_fifo_ready),
.occupied (),
.space ()
);
//---------------------------------------------------------------------------
// Record Input Data FIFO
//---------------------------------------------------------------------------
//
// This FIFO stores data to be recording into the RAM buffer.
//
//---------------------------------------------------------------------------
axi_fifo #(
.WIDTH (DATA_WIDTH),
.SIZE (REC_FIFO_ADDR_WIDTH)
) rec_axi_fifo (
.clk (clk),
.reset (rst),
.clear (1'b0),
//
.i_tdata (i_tdata),
.i_tvalid (i_tvalid),
.i_tready (i_tready),
//
.o_tdata (rec_fifo_o_tdata),
.o_tvalid (rec_fifo_o_tvalid),
.o_tready (rec_fifo_o_tready),
//
.space (),
.occupied (rec_fifo_occupied)
);
//---------------------------------------------------------------------------
// Record State Machine
//---------------------------------------------------------------------------
// FSM States
localparam REC_WAIT_FIFO = 0;
localparam REC_CHECK_ALIGN = 1;
localparam REC_DMA_REQ = 2;
localparam REC_WAIT_DMA_START = 3;
localparam REC_WAIT_DMA_COMMIT = 4;
// State Signals
reg [2:0] rec_state;
// Registers
reg [ADDR_WIDTH-1:0] rec_base_addr; // Last base address pulled from settings register
reg [ADDR_WIDTH-1:0] rec_buffer_size; // Last buffer size pulled from settings register
reg [ADDR_WIDTH-1:0] rec_addr; // Current offset into record buffer
reg [ADDR_WIDTH-1:0] rec_size; // Number of words to transfer next
reg [ADDR_WIDTH-1:0] rec_size_0; // Pipeline stage for computation of rec_size
reg signed [ADDR_WIDTH:0] rec_size_aligned; // rec_size reduced to not cross 4k boundary
// Timer to count how many cycles we've been waiting for new data
reg [$clog2(DATA_WAIT_TIMEOUT+1)-1:0] rec_wait_timer;
reg rec_wait_timeout;
always @(posedge clk) begin
if (rst) begin
rec_state <= REC_WAIT_FIFO;
rec_addr <= 0;
write_ctrl_valid <= 1'b0;
rec_buffer_avail <= 0;
rec_buffer_used <= 0;
rec_wait_timer <= 0;
rec_wait_timeout <= 0;
end else begin
// Default assignments
rec_restart_clear <= 1'b0;
// Update wait timer
if (i_tvalid || !rec_fifo_occupied) begin
// If a new word is presented to the input FIFO, or the FIFO is empty,
// then reset the timer.
rec_wait_timer <= 0;
rec_wait_timeout <= 1'b0;
end else if (rec_fifo_occupied) begin
// If no new word is written, but there's data in the FIFO, update the
// timer. Latch timeout condition when we reach out limit.
rec_wait_timer <= rec_wait_timer + 1;
if (rec_wait_timer == DATA_WAIT_TIMEOUT) begin
rec_wait_timeout <= 1'b1;
end
end
// Pre-calculate the aligned size
rec_size_aligned <= $signed(AXI_ALIGNMENT) - $signed(rec_addr & (AXI_ALIGNMENT-1));
//
// State logic
//
case (rec_state)
REC_WAIT_FIFO : begin
// Wait until there's enough data to initiate a transfer from the
// FIFO to the RAM.
// Check if a restart was requested on the record interface
if (rec_restart) begin
rec_restart_clear <= 1'b1;
// Latch the new register values. We don't want them to change
// while we're running.
rec_base_addr <= rec_base_addr_sr;
rec_buffer_size <= rec_buffer_size_sr / WORD_SIZE; // Store size in words
// Reset counters and address any time we update the buffer size or
// base address.
rec_buffer_avail <= rec_buffer_size_sr / WORD_SIZE; // Store size in words
rec_buffer_used <= 0;
rec_addr <= rec_base_addr_sr;
// Check if there's room left in the record RAM buffer
end else if (rec_buffer_used < rec_buffer_size) begin
// See if we can transfer a full burst
if (rec_fifo_occupied >= MEM_BURST_SIZE && rec_buffer_avail >= MEM_BURST_SIZE) begin
rec_size_0 <= MEM_BURST_SIZE;
rec_state <= REC_CHECK_ALIGN;
// Otherwise, if we've been waiting a long time, see if we can
// transfer less than a burst.
end else if (rec_fifo_occupied > 0 && rec_wait_timeout) begin
rec_size_0 <= (rec_fifo_occupied <= rec_buffer_avail) ?
rec_fifo_occupied : rec_buffer_avail;
rec_state <= REC_CHECK_ALIGN;
end
end
end
REC_CHECK_ALIGN : begin
// Check the address alignment, since AXI requires that an access not
// cross 4k boundaries (boo), and the axi_dma_master doesn't handle
// this automatically (boo again).
rec_size <= ($signed({1'b0,rec_size_0}) > rec_size_aligned) ?
rec_size_aligned : rec_size_0;
// DMA interface is ready, so transaction will begin
rec_state <= REC_DMA_REQ;
end
REC_DMA_REQ : begin
// The write count written to the DMA engine should be 1 less than
// the number of words you want to write (not the number of bytes).
write_count <= rec_size - 1;
// Create the physical RAM byte address by combining the address and
// base address.
write_addr <= rec_addr;
// Once the interface is ready, make the DMA request
if (write_ctrl_ready) begin
// Request the write transaction
write_ctrl_valid <= 1'b1;
rec_state <= REC_WAIT_DMA_START;
end
end
REC_WAIT_DMA_START : begin
// Wait until DMA interface deasserts ready, indicating it has
// started on the request.
write_ctrl_valid <= 1'b0;
if (!write_ctrl_ready) begin
rec_state <= REC_WAIT_DMA_COMMIT;
end
end
REC_WAIT_DMA_COMMIT : begin
// Wait for the DMA interface to reassert write_ctrl_ready, which
// signals that the DMA engine has received a response for the whole
// write transaction and (we assume) it has been committed to RAM.
// After this, we can update the write address and start the next
// transaction.
if (write_ctrl_ready) begin
rec_addr <= rec_addr + (rec_size * WORD_SIZE);
rec_buffer_used <= rec_buffer_used + rec_size;
rec_buffer_avail <= rec_buffer_avail - rec_size;
rec_state <= REC_WAIT_FIFO;
end
end
default : begin
rec_state <= REC_WAIT_FIFO;
end
endcase
end
end
// Connect output of record FIFO to input of DMA write interface
assign write_data = rec_fifo_o_tdata;
assign write_data_valid = rec_fifo_o_tvalid;
assign rec_fifo_o_tready = write_data_ready;
//---------------------------------------------------------------------------
// Playback State Machine
//---------------------------------------------------------------------------
// FSM States
localparam PLAY_IDLE = 0;
localparam PLAY_WAIT_DATA_READY = 1;
localparam PLAY_SIZE_CALC = 2;
localparam PLAY_DMA_REQ = 3;
localparam PLAY_WAIT_DMA_START = 4;
localparam PLAY_WAIT_DMA_COMMIT = 5;
localparam PLAY_DONE_CHECK = 6;
// State Signals
reg [2:0] play_state;
// Registers
reg [ADDR_WIDTH-1:0] play_base_addr; // Last base address pulled from settings register
reg [ADDR_WIDTH-1:0] play_buffer_size; // Last buffer size pulled from settings register
reg [ADDR_WIDTH-1:0] play_addr; // Current byte offset into record buffer
reg [ADDR_WIDTH-1:0] play_addr_0; // Pipeline stage for computing play_addr
reg [ADDR_WIDTH-1:0] play_addr_1; // Pipeline stage for computing play_addr
reg [ADDR_WIDTH-1:0] play_buffer_end; // Address of location after end of buffer
reg [ADDR_WIDTH-1:0] max_dma_size; // Maximum size of next transfer, in words
//
reg [LINES_WIDTH-1:0] cmd_num_lines; // Copy of cmd_num_lines from last command
reg [LINES_WIDTH-1:0] play_words_remaining; // Number of lines left to read for command
reg cmd_chain; // Copy of cmd_chain from last command
reg cmd_reload; // Copy of cmd_reload from last command
reg play_full_burst_avail; // True if we there's a full burst to read
reg play_buffer_avail_nonzero; // True if > 0
reg cmd_num_lines_cf_nonzero; // True if > 0
reg max_dma_size_ok; // True if it's OK to read max_dma_size
reg [ADDR_WIDTH-1:0] max_dma_size_m1; // max_dma_size - 1
reg [ADDR_WIDTH-1:0] play_words_remaining_m1; // play_words_remaining - 1
reg [ADDR_WIDTH-1:0] play_buffer_avail; // Number of words left to read in record buffer
reg [ADDR_WIDTH-1:0] play_buffer_avail_0; // Pipeline stage for computing play_buffer_avail
always @(posedge clk)
begin
if (rst) begin
play_state <= PLAY_IDLE;
cmd_fifo_ready <= 1'b0;
end else begin
// Calculate how many words are left to read from the record buffer
play_full_burst_avail <= (play_buffer_avail >= MEM_BURST_SIZE);
play_buffer_avail_nonzero <= (play_buffer_avail > 0);
cmd_num_lines_cf_nonzero <= (cmd_num_lines_cf > 0);
play_buffer_end <= play_base_addr_sr + play_buffer_size_sr;
// Default values
cmd_fifo_ready <= 1'b0;
read_ctrl_valid <= 1'b0;
play_halt_clear <= 1'b0;
//
// State logic
//
case (play_state)
PLAY_IDLE : begin
// Always start reading at the start of the record buffer
play_addr <= play_base_addr_sr;
// Save off command info, in case we need to repeat the command
cmd_num_lines <= cmd_num_lines_cf;
cmd_reload <= cmd_reload_cf;
cmd_chain <= cmd_chain_cf;
// Save the buffer info so it doesn't update during playback
play_base_addr <= play_base_addr_sr;
play_buffer_size <= play_buffer_size_sr;
play_buffer_avail <= play_buffer_size_sr / WORD_SIZE;
// Wait until we receive a command and we have enough data recorded
// to honor it.
if (cmd_fifo_valid && ~play_halt_clear) begin
// Load the number of word remaining to complete this command
play_words_remaining <= cmd_num_lines_cf;
// We don't support time yet, so we require send_imm to do
// anything. Also, we can't do anything until we have data recorded.
if (cmd_stop_cf) begin
// Do nothing, except clear command from the FIFO
cmd_fifo_ready <= 1'b1;
end else if (cmd_send_imm_cf
&& play_buffer_avail_nonzero
&& cmd_num_lines_cf_nonzero) begin
// Dequeue the command from the FIFO
cmd_fifo_ready <= 1'b1;
play_state <= PLAY_WAIT_DATA_READY;
end
end else if (play_halt) begin
// In case we get a HALT after a command has finished
play_halt_clear <= 1'b1;
end
end
PLAY_WAIT_DATA_READY : begin
// Save the maximum size we can read from RAM
max_dma_size <= play_full_burst_avail ? MEM_BURST_SIZE : play_buffer_avail;
// Check if we got a halt command while waiting
if (play_halt) begin
play_halt_clear <= 1'b1;
play_state <= PLAY_IDLE;
// Wait for output FIFO to empty sufficiently so we can read an
// entire burst at once. This may be more space than needed, but we
// won't know the exact size until the next state.
end else if (play_fifo_space >= MEM_BURST_SIZE) begin
play_state <= PLAY_SIZE_CALC;
end
end
PLAY_SIZE_CALC : begin
// Do some intermediate calculations to determine what the read_count
// should be.
play_words_remaining_m1 <= play_words_remaining-1;
max_dma_size_m1 <= max_dma_size-1;
max_dma_size_ok <= play_words_remaining >= max_dma_size;
play_state <= PLAY_DMA_REQ;
end
PLAY_DMA_REQ : begin
// Load the size of the next read into a register. We try to read the
// max amount available (up to the burst size) or however many words
// are needed to reach the end of the RAM buffer.
//
// The read count written to the DMA engine should be 1 less than the
// number of words you want to read (not the number of bytes).
read_count <= max_dma_size_ok ? max_dma_size_m1 : play_words_remaining_m1;
// Load the address to read. Note that we don't do an alignment check
// since we assume that multiples of MEM_BURST_SIZE meet the
// AXI_ALIGNMENT requirement.
read_addr <= play_addr;
// Request the read transaction as soon as DMA interface is ready
if (read_ctrl_ready) begin
read_ctrl_valid <= 1'b1;
play_state <= PLAY_WAIT_DMA_START;
end
end
PLAY_WAIT_DMA_START : begin
// Wait until DMA interface deasserts ready, indicating it has
// started on the request.
read_ctrl_valid <= 1'b0;
if (!read_ctrl_ready) begin
// Update values for next transaction
play_addr_0 <= play_addr + ({{(ADDR_WIDTH-COUNT_WIDTH){1'b0}}, read_count} + 1) * WORD_SIZE;
play_words_remaining <= play_words_remaining - ({1'b0, read_count} + 1);
play_buffer_avail_0 <= play_buffer_avail - ({1'b0, read_count} + 1);
play_state <= PLAY_WAIT_DMA_COMMIT;
end
end
PLAY_WAIT_DMA_COMMIT : begin
// Wait for the DMA interface to reassert read_ctrl_ready, which
// signals that the DMA engine has received a response for the whole
// read transaction.
if (read_ctrl_ready) begin
// Check if we need to wrap the address for the next transaction
if (play_addr_0 >= play_buffer_end) begin
play_addr_1 <= play_base_addr_sr;
play_buffer_avail <= play_buffer_size_sr / WORD_SIZE;
end else begin
play_addr_1 <= play_addr_0;
play_buffer_avail <= play_buffer_avail_0;
end
play_state <= PLAY_DONE_CHECK;
end
end
PLAY_DONE_CHECK : begin
play_addr <= play_addr_1;
// Check if we have more data to transfer for this command
if (play_words_remaining) begin
play_state <= PLAY_WAIT_DATA_READY;
// Check if we're chaining
end else if (cmd_chain) begin
// Check if there's a new command waiting
if (cmd_fifo_valid) begin
// Load the next command. Note that we don't reset the playback
// address when commands are chained together.
play_words_remaining <= cmd_num_lines_cf;
cmd_num_lines <= cmd_num_lines_cf;
cmd_reload <= cmd_reload_cf;
cmd_chain <= cmd_chain_cf;
// Dequeue the command from the FIFO
cmd_fifo_ready <= 1'b1;
// Stop if it's a stop command, otherwise restart
if (cmd_stop_cf) begin
play_state <= PLAY_IDLE;
end else begin
play_state <= PLAY_WAIT_DATA_READY;
end
// Check if we need to restart the previous command
end else if (cmd_reload) begin
play_words_remaining <= cmd_num_lines;
play_state <= PLAY_WAIT_DATA_READY;
end
// Nothing left to do
end else begin
play_state <= PLAY_IDLE;
end
end
endcase
end
end
// Connect output of DMA master to playback data FIFO
assign play_fifo_i_tdata = read_data;
assign play_fifo_i_tvalid = read_data_valid;
assign read_data_ready = play_fifo_i_tready;
//---------------------------------------------------------------------------
// TLAST Generation
//---------------------------------------------------------------------------
//
// This block monitors the signals to/from the DMA master and generates the
// TLAST signal. We assert TLAST at the end of every read transaction and
// after every play_max_len_sr words, so that no packets are longer than the
// length indicated by the max_len register.
//
// The timing of this block relies on the fact that read_ctrl_ready is not
// reasserted by the DMA master until after TLAST gets asserted.
//
//---------------------------------------------------------------------------
reg [COUNT_WIDTH-1:0] read_counter;
reg [COUNT_WIDTH-1:0] length_counter;
reg play_fifo_i_tlast;
always @(posedge clk)
begin
if (rst) begin
play_fifo_i_tlast <= 1'b0;
end else begin
// Check if we're requesting a read transaction
if (read_ctrl_valid && read_ctrl_ready) begin
// Initialize read_counter for new transaction
read_counter <= read_count;
length_counter <= play_max_len_sr;
// If read_count is 0, then the first word is also the last word
if (read_count == 0) begin
play_fifo_i_tlast <= 1'b1;
end
// Track the number of words read out by DMA master
end else if (read_data_valid && read_data_ready) begin
read_counter <= read_counter - 1;
length_counter <= length_counter - 1;
// Check if the word currently being output is the last word of a
// packet, which means we need to clear tlast.
if (play_fifo_i_tlast) begin
// But make sure that the next word isn't also the last of a DMA
// burst, for which we will need to keep tlast asserted.
if (read_counter != 1) begin
play_fifo_i_tlast <= 1'b0;
end
// Restart length counter
length_counter <= play_max_len_sr;
// Check if the next word to be output should be the last of a packet.
end else if (read_counter == 1 || length_counter == 2) begin
play_fifo_i_tlast <= 1'b1;
end
end
end
end
//---------------------------------------------------------------------------
// Playback Output Data FIFO
//---------------------------------------------------------------------------
//
// This FIFO buffers data that has been read out of RAM as part of a playback
// operation.
//
//---------------------------------------------------------------------------
axi_fifo #(
.WIDTH (DATA_WIDTH+1),
.SIZE (PLAY_FIFO_ADDR_WIDTH)
) play_axi_fifo (
.clk (clk),
.reset (rst),
.clear (1'b0),
//
.i_tdata ({play_fifo_i_tlast, play_fifo_i_tdata}),
.i_tvalid (play_fifo_i_tvalid),
.i_tready (play_fifo_i_tready),
//
.o_tdata ({o_tlast, o_tdata}),
.o_tvalid (o_tvalid),
.o_tready (o_tready),
//
.space (play_fifo_space),
.occupied ()
);
endmodule
|