1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
//
// Copyright 2018 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: axis_ctrl_crossbar_2d_mesh
// Description:
// This module implements a 2-dimentional (2d) mesh network (mesh) crossbar
// for AXIS-CTRL traffic. Supports mesh and torus topologies.
// It uses AXI-Stream for all of its links.
// The torus topology, routing algorithms and the router architecture is
// described in README.md in this directory.
// Parameters:
// - WIDTH: Width of the AXI-Stream data bus
// - DIM_SIZE: Number of routers alone one dimension (# Nodes = DIM_SIZE * DIM_SIZE)
// - TOPOLOGY: Is this a mesh (MESH) or a torus (TORUS) topology
// - INGRESS_BUFF_SIZE: log2 of the ingress terminal buffer size (in words)
// - ROUTER_BUFF_SIZE: log2 of the ingress inter-router buffer size (in words)
// - ROUTING_ALLOC: Algorithm to allocate routing paths between routers.
// * WORMHOLE: Allocate route as soon as first word in pkt arrives
// * CUT-THROUGH: Allocate route only after the full pkt arrives
// - SWITCH_ALLOC: Algorithm to allocate the switch
// * PRIO: Priority based. Priority: Y-dim > X-dim > Term
// * ROUND-ROBIN: Round robin input port allocation
// - DEADLOCK_TIMEOUT: Number of cycles to wait until a deadlock is detected
// Signals:
// - s_axis_*: Slave port for router (flattened)
// - m_axis_*: Master port for router (flattened)
//
module axis_ctrl_crossbar_2d_mesh #(
parameter DIM_SIZE = 4,
parameter WIDTH = 64,
parameter TOPOLOGY = "MESH",
parameter INGRESS_BUFF_SIZE = 5,
parameter ROUTER_BUFF_SIZE = 5,
parameter ROUTING_ALLOC = "WORMHOLE",
parameter SWITCH_ALLOC = "PRIO",
parameter DEADLOCK_TIMEOUT = 16384
) (
input wire clk,
input wire reset,
// Inputs
input wire [(DIM_SIZE*DIM_SIZE*WIDTH)-1:0] s_axis_tdata,
input wire [DIM_SIZE*DIM_SIZE-1:0] s_axis_tvalid,
input wire [DIM_SIZE*DIM_SIZE-1:0] s_axis_tlast,
output wire [DIM_SIZE*DIM_SIZE-1:0] s_axis_tready,
// Output
output wire [(DIM_SIZE*DIM_SIZE*WIDTH)-1:0] m_axis_tdata,
output wire [DIM_SIZE*DIM_SIZE-1:0] m_axis_tvalid,
output wire [DIM_SIZE*DIM_SIZE-1:0] m_axis_tlast,
input wire [DIM_SIZE*DIM_SIZE-1:0] m_axis_tready,
// Deadlock alert
output wire deadlock_detected
);
`include "mesh_node_mapping.vh"
//-------------------------------------------------------
// Unflatten input and output ports
//-------------------------------------------------------
wire [WIDTH-1:0] i_tdata_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire i_tlast_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire i_tvalid_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire i_tready_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire [WIDTH-1:0] o_tdata_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire o_tlast_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire o_tvalid_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire o_tready_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire clear_routers = deadlock_detected;
genvar p,x,y;
generate
for (p = 0; p < DIM_SIZE*DIM_SIZE; p=p+1) begin
assign i_tdata_arr[node_to_ydst(p)][node_to_xdst(p)] = s_axis_tdata[p*WIDTH +: WIDTH];
assign i_tlast_arr[node_to_ydst(p)][node_to_xdst(p)] = s_axis_tlast[p];
assign i_tvalid_arr[node_to_ydst(p)][node_to_xdst(p)] = s_axis_tvalid[p];
assign s_axis_tready[p] = i_tready_arr[node_to_ydst(p)][node_to_xdst(p)] | clear_routers;
assign m_axis_tdata[p*WIDTH +: WIDTH] = o_tdata_arr[node_to_ydst(p)][node_to_xdst(p)];
assign m_axis_tlast[p] = o_tlast_arr [node_to_ydst(p)][node_to_xdst(p)];
assign m_axis_tvalid[p] = o_tvalid_arr[node_to_ydst(p)][node_to_xdst(p)] & ~clear_routers;
assign o_tready_arr[node_to_ydst(p)][node_to_xdst(p)] = m_axis_tready[p];
end
endgenerate
//-------------------------------------------------------
// Instantiate routers
//-------------------------------------------------------
wire [WIDTH-1:0] e2w_tdata_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire e2w_tdest_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire e2w_tlast_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire e2w_tvalid_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire e2w_tready_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire [WIDTH-1:0] w2e_tdata_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire w2e_tdest_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire w2e_tlast_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire w2e_tvalid_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire w2e_tready_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire [WIDTH-1:0] n2s_tdata_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire n2s_tdest_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire n2s_tlast_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire n2s_tvalid_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire n2s_tready_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire [WIDTH-1:0] s2n_tdata_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire s2n_tdest_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire s2n_tlast_arr [0:DIM_SIZE-1][0:DIM_SIZE-1];
wire s2n_tvalid_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
wire s2n_tready_arr[0:DIM_SIZE-1][0:DIM_SIZE-1];
localparam N = DIM_SIZE;
localparam NEND = DIM_SIZE - 1;
localparam [WIDTH-1:0] ZERO = {WIDTH{1'b0}};
generate
for (y = 0; y < DIM_SIZE; y=y+1) begin: ydim
for (x = 0; x < DIM_SIZE; x=x+1) begin: xdim
if (TOPOLOGY == "MESH") begin
mesh_2d_dor_router_single_sw #(
.WIDTH (WIDTH),
.DIM_SIZE (DIM_SIZE),
.XB_ADDR_X (x),
.XB_ADDR_Y (y),
.TERM_BUFF_SIZE (INGRESS_BUFF_SIZE),
.XB_BUFF_SIZE (ROUTER_BUFF_SIZE),
.ROUTING_ALLOC (ROUTING_ALLOC),
.SWITCH_ALLOC (SWITCH_ALLOC)
) rtr_i (
// Clock and reset
.clk (clk),
.reset (reset | clear_routers),
// Terminals
.s_axis_ter_tdata (i_tdata_arr [y][x]),
.s_axis_ter_tlast (i_tlast_arr [y][x]),
.s_axis_ter_tvalid (i_tvalid_arr[y][x]),
.s_axis_ter_tready (i_tready_arr[y][x]),
.m_axis_ter_tdata (o_tdata_arr [y][x]),
.m_axis_ter_tlast (o_tlast_arr [y][x]),
.m_axis_ter_tvalid (o_tvalid_arr[y][x]),
.m_axis_ter_tready (o_tready_arr[y][x]),
// West connections
.s_axis_wst_tdata ((x != 0) ? e2w_tdata_arr [y][x] : ZERO),
.s_axis_wst_tdest ((x != 0) ? e2w_tdest_arr [y][x] : 1'b0),
.s_axis_wst_tlast ((x != 0) ? e2w_tlast_arr [y][x] : 1'b0),
.s_axis_wst_tvalid ((x != 0) ? e2w_tvalid_arr[y][x] : 1'b0),
.s_axis_wst_tready ( e2w_tready_arr[y][x] ),
.m_axis_wst_tdata ( w2e_tdata_arr [y][(x+N-1)%N] ),
.m_axis_wst_tdest ( w2e_tdest_arr [y][(x+N-1)%N] ),
.m_axis_wst_tlast ( w2e_tlast_arr [y][(x+N-1)%N] ),
.m_axis_wst_tvalid ( w2e_tvalid_arr[y][(x+N-1)%N] ),
.m_axis_wst_tready ((x != 0) ? w2e_tready_arr[y][(x+N-1)%N] : 1'b1),
// East connections
.s_axis_est_tdata ((x != NEND) ? w2e_tdata_arr [y][x] : ZERO),
.s_axis_est_tdest ((x != NEND) ? w2e_tdest_arr [y][x] : 1'b0),
.s_axis_est_tlast ((x != NEND) ? w2e_tlast_arr [y][x] : 1'b0),
.s_axis_est_tvalid ((x != NEND) ? w2e_tvalid_arr[y][x] : 1'b0),
.s_axis_est_tready ( w2e_tready_arr[y][x] ),
.m_axis_est_tdata ( e2w_tdata_arr [y][(x+1)%N] ),
.m_axis_est_tdest ( e2w_tdest_arr [y][(x+1)%N] ),
.m_axis_est_tlast ( e2w_tlast_arr [y][(x+1)%N] ),
.m_axis_est_tvalid ( e2w_tvalid_arr[y][(x+1)%N] ),
.m_axis_est_tready ((x != NEND) ? e2w_tready_arr[y][(x+1)%N] : 1'b1),
// North connections
.s_axis_nor_tdata ((y != 0) ? s2n_tdata_arr [y][x] : ZERO),
.s_axis_nor_tdest ((y != 0) ? s2n_tdest_arr [y][x] : 1'b0),
.s_axis_nor_tlast ((y != 0) ? s2n_tlast_arr [y][x] : 1'b0),
.s_axis_nor_tvalid ((y != 0) ? s2n_tvalid_arr[y][x] : 1'b0),
.s_axis_nor_tready ( s2n_tready_arr[y][x] ),
.m_axis_nor_tdata ( n2s_tdata_arr [(y+N-1)%N][x] ),
.m_axis_nor_tdest ( n2s_tdest_arr [(y+N-1)%N][x] ),
.m_axis_nor_tlast ( n2s_tlast_arr [(y+N-1)%N][x] ),
.m_axis_nor_tvalid ( n2s_tvalid_arr[(y+N-1)%N][x] ),
.m_axis_nor_tready ((y != 0) ? n2s_tready_arr[(y+N-1)%N][x] : 1'b1),
// South connections
.s_axis_sou_tdata ((y != NEND) ? n2s_tdata_arr [y][x] : ZERO),
.s_axis_sou_tdest ((y != NEND) ? n2s_tdest_arr [y][x] : 1'b0),
.s_axis_sou_tlast ((y != NEND) ? n2s_tlast_arr [y][x] : 1'b0),
.s_axis_sou_tvalid ((y != NEND) ? n2s_tvalid_arr[y][x] : 1'b0),
.s_axis_sou_tready ( n2s_tready_arr[y][x] ),
.m_axis_sou_tdata ( s2n_tdata_arr [(y+1)%N][x] ),
.m_axis_sou_tdest ( s2n_tdest_arr [(y+1)%N][x] ),
.m_axis_sou_tlast ( s2n_tlast_arr [(y+1)%N][x] ),
.m_axis_sou_tvalid ( s2n_tvalid_arr[(y+1)%N][x] ),
.m_axis_sou_tready ((y != NEND) ? s2n_tready_arr[(y+1)%N][x] : 1'b1)
);
end else begin
torus_2d_dor_router_single_sw #(
.WIDTH (WIDTH),
.DIM_SIZE (DIM_SIZE),
.XB_ADDR_X (x),
.XB_ADDR_Y (y),
.TERM_BUFF_SIZE (INGRESS_BUFF_SIZE),
.XB_BUFF_SIZE (ROUTER_BUFF_SIZE),
.ROUTING_ALLOC (ROUTING_ALLOC),
.SWITCH_ALLOC (SWITCH_ALLOC)
) rtr_i (
// Clock and reset
.clk (clk),
.reset (reset | clear_routers),
// Terminals
.s_axis_term_tdata (i_tdata_arr [y][x]),
.s_axis_term_tlast (i_tlast_arr [y][x]),
.s_axis_term_tvalid (i_tvalid_arr[y][x]),
.s_axis_term_tready (i_tready_arr[y][x]),
.m_axis_term_tdata (o_tdata_arr [y][x]),
.m_axis_term_tlast (o_tlast_arr [y][x]),
.m_axis_term_tvalid (o_tvalid_arr[y][x]),
.m_axis_term_tready (o_tready_arr[y][x]),
// X-dim connections
.s_axis_xdim_tdata (e2w_tdata_arr [y][x] ),
.s_axis_xdim_tdest (e2w_tdest_arr [y][x] ),
.s_axis_xdim_tlast (e2w_tlast_arr [y][x] ),
.s_axis_xdim_tvalid (e2w_tvalid_arr[y][x] ),
.s_axis_xdim_tready (e2w_tready_arr[y][x] ),
.m_axis_xdim_tdata (e2w_tdata_arr [y][(x+1)%N]),
.m_axis_xdim_tdest (e2w_tdest_arr [y][(x+1)%N]),
.m_axis_xdim_tlast (e2w_tlast_arr [y][(x+1)%N]),
.m_axis_xdim_tvalid (e2w_tvalid_arr[y][(x+1)%N]),
.m_axis_xdim_tready (e2w_tready_arr[y][(x+1)%N]),
// Y-dim connections
.s_axis_ydim_tdata (s2n_tdata_arr [y][x] ),
.s_axis_ydim_tdest (s2n_tdest_arr [y][x] ),
.s_axis_ydim_tlast (s2n_tlast_arr [y][x] ),
.s_axis_ydim_tvalid (s2n_tvalid_arr[y][x] ),
.s_axis_ydim_tready (s2n_tready_arr[y][x] ),
.m_axis_ydim_tdata (s2n_tdata_arr [(y+1)%N][x]),
.m_axis_ydim_tdest (s2n_tdest_arr [(y+1)%N][x]),
.m_axis_ydim_tlast (s2n_tlast_arr [(y+1)%N][x]),
.m_axis_ydim_tvalid (s2n_tvalid_arr[(y+1)%N][x]),
.m_axis_ydim_tready (s2n_tready_arr[(y+1)%N][x])
);
end
end
end
endgenerate
//-------------------------------------------------------
// Deadlock detector
//-------------------------------------------------------
// A deadlock is defined on an AXIS bus as an extended period
// where tvlid=1 but tready=0. If at least one slave port is in
// this state and none of the master ports are then this router
// will go into a failsafe deadlock recovery mode. The DEADLOCK_TIMEOUT
// parameter defines the duration for which this condition has
// to be true. In deadlock recovery mode, all routers are held in reset
// (thus losing all packets in flights) and all input ports are flushed.
wire m_locked = |(m_axis_tvalid & ~m_axis_tready);
wire s_locked = |(s_axis_tvalid & ~s_axis_tready);
// A counter that tracks the duration for which the router is livelocked
// If the livelock duration is higher than DEADLOCK_TIMEOUT then it is a
// deadlock
reg [$clog2(DEADLOCK_TIMEOUT)-1:0] deadlock_counter = DEADLOCK_TIMEOUT-1;
always @(posedge clk) begin
if (reset | ~(s_locked & ~m_locked)) begin
deadlock_counter <= DEADLOCK_TIMEOUT-1;
end else if (deadlock_counter != 'd0) begin
deadlock_counter <= deadlock_counter - 1;
end
end
// A counter that tracks the deadlock recovery period. If the slave ports
// have no activity for DEADLOCK_TIMEOUT cycles then the router can
// successfully come out of the deadlocked state.
reg [$clog2(DEADLOCK_TIMEOUT)-1:0] deadlock_recover_counter = 'd0;
always @(posedge clk) begin
if (reset) begin
deadlock_recover_counter <= 'd0;
end else if (deadlock_detected) begin
if (|s_axis_tvalid)
deadlock_recover_counter <= DEADLOCK_TIMEOUT-1;
else
deadlock_recover_counter <= deadlock_recover_counter - 1;
end else if (deadlock_counter == 'd0) begin
deadlock_recover_counter <= DEADLOCK_TIMEOUT-1;
end
end
assign deadlock_detected = (deadlock_recover_counter != 0);
endmodule
|