1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
//
// Copyright 2018 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: mesh_2d_dor_router_single_sw
// Description:
// This module implements the router for a 2-dimentional (2d)
// mesh network that uses dimension order routing (dor) and has a
// single underlying switch (single_sw). It uses AXI-Stream for all of its
// links.
// The mesh topology, routing algorithms and the router architecture is
// described in README.md in this directory.
// Parameters:
// - WIDTH: Width of the AXI-Stream data bus
// - DIM_SIZE: Number of routers alone one dimension
// - XB_ADDR_X: The X-coordinate of this router in the topology
// - XB_ADDR_Y: The Y-coordinate of this router in the topology
// - TERM_BUFF_SIZE: log2 of the ingress terminal buffer size (in words)
// - XB_BUFF_SIZE: log2 of the ingress inter-router buffer size (in words)
// - ROUTING_ALLOC: Algorithm to allocate routing paths between routers.
// * WORMHOLE: Allocate route as soon as first word in pkt arrives
// * CUT-THROUGH: Allocate route only after the full pkt arrives
// - SWITCH_ALLOC: Algorithm to allocate the switch
// * PRIO: Priority based. Priority: Y-dim > X-dim > Term
// * ROUND-ROBIN: Round robin input port allocation
// Signals:
// - *_axis_ter_*: Terminal ports (master/slave)
// - *_axis_wst_*: Inter-router X-dim west connections (master/slave)
// - *_axis_est_*: Inter-router X-dim east connections (master/slave)
// - *_axis_nor_*: Inter-router X-dim north connections (master/slave)
// - *_axis_sou_*: Inter-router X-dim south connections (master/slave)
//
module mesh_2d_dor_router_single_sw #(
parameter WIDTH = 64,
parameter DIM_SIZE = 4,
parameter [$clog2(DIM_SIZE)-1:0] XB_ADDR_X = 0,
parameter [$clog2(DIM_SIZE)-1:0] XB_ADDR_Y = 0,
parameter TERM_BUFF_SIZE = 5,
parameter XB_BUFF_SIZE = 5,
parameter ROUTING_ALLOC = "WORMHOLE", // Routing (switching) method {WORMHOLE, CUT-THROUGH}
parameter SWITCH_ALLOC = "PRIO" // Switch allocation algorithm {ROUND-ROBIN, PRIO}
) (
// Clocks and resets
input wire clk,
input wire reset,
// Terminal connections
input wire [WIDTH-1:0] s_axis_ter_tdata,
input wire s_axis_ter_tlast,
input wire s_axis_ter_tvalid,
output wire s_axis_ter_tready,
output wire [WIDTH-1:0] m_axis_ter_tdata,
output wire m_axis_ter_tlast,
output wire m_axis_ter_tvalid,
input wire m_axis_ter_tready,
// West inter-router connections
input wire [WIDTH-1:0] s_axis_wst_tdata,
input wire [0:0] s_axis_wst_tdest,
input wire s_axis_wst_tlast,
input wire s_axis_wst_tvalid,
output wire s_axis_wst_tready,
output wire [WIDTH-1:0] m_axis_wst_tdata,
output wire [0:0] m_axis_wst_tdest,
output wire m_axis_wst_tlast,
output wire m_axis_wst_tvalid,
input wire m_axis_wst_tready,
// East inter-router connections
input wire [WIDTH-1:0] s_axis_est_tdata,
input wire [0:0] s_axis_est_tdest,
input wire s_axis_est_tlast,
input wire s_axis_est_tvalid,
output wire s_axis_est_tready,
output wire [WIDTH-1:0] m_axis_est_tdata,
output wire [0:0] m_axis_est_tdest,
output wire m_axis_est_tlast,
output wire m_axis_est_tvalid,
input wire m_axis_est_tready,
// North inter-router connections
input wire [WIDTH-1:0] s_axis_nor_tdata,
input wire [0:0] s_axis_nor_tdest,
input wire s_axis_nor_tlast,
input wire s_axis_nor_tvalid,
output wire s_axis_nor_tready,
output wire [WIDTH-1:0] m_axis_nor_tdata,
output wire [0:0] m_axis_nor_tdest,
output wire m_axis_nor_tlast,
output wire m_axis_nor_tvalid,
input wire m_axis_nor_tready,
// South inter-router connections
input wire [WIDTH-1:0] s_axis_sou_tdata,
input wire [0:0] s_axis_sou_tdest,
input wire s_axis_sou_tlast,
input wire s_axis_sou_tvalid,
output wire s_axis_sou_tready,
output wire [WIDTH-1:0] m_axis_sou_tdata,
output wire [0:0] m_axis_sou_tdest,
output wire m_axis_sou_tlast,
output wire m_axis_sou_tvalid,
input wire m_axis_sou_tready
);
// -------------------------------------------------
// Routing functions
// -------------------------------------------------
// mesh_node_mapping.vh file contains the mapping between the node number
// and its XY coordinates. It is autogenerated and defines the node_to_xdst
// and node_to_ydst functions.
`include "mesh_node_mapping.vh"
localparam [2:0] SW_DEST_TER = 3'd0;
localparam [2:0] SW_DEST_WST = 3'd1;
localparam [2:0] SW_DEST_EST = 3'd2;
localparam [2:0] SW_DEST_NOR = 3'd3;
localparam [2:0] SW_DEST_SOU = 3'd4;
localparam [2:0] SW_NUM_DESTS = 3'd5;
// The compute_switch_tdest function is the destination selector
// i.e. it will inspecte the bottom $clog2(DIM_SIZE)*2 bits of the
// first word of a packet and determine the destination of the packet.
function [3:0] compute_switch_tdest;
input [WIDTH-1:0] header;
input [3:0] src;
reg [$clog2(DIM_SIZE)-1:0] xdst, ydst;
reg signed [$clog2(DIM_SIZE):0] xdiff, ydiff;
begin
xdst = node_to_xdst(header);
ydst = node_to_ydst(header);
xdiff = xdst - XB_ADDR_X;
ydiff = ydst - XB_ADDR_Y;
// Routing logic
// - MSB is the VC, 3 LSBs are the router destination
// - VC in a mesh is always 0
if (xdiff == 'd0 && ydiff == 'd0) begin
// VC=0 because terminals don't have VCs
compute_switch_tdest = {1'b0, SW_DEST_TER};
end else if (xdiff == 'd0) begin
// VC=1 for CCW turns and VC=0 for everything else
if (ydiff < 0)
compute_switch_tdest = {(src == SW_DEST_WST), SW_DEST_NOR};
else
compute_switch_tdest = {(src == SW_DEST_EST), SW_DEST_SOU};
end else begin
// VC=0 because east-west paths don't have VCs
if (xdiff < 0)
compute_switch_tdest = {1'b0, SW_DEST_WST};
else
compute_switch_tdest = {1'b0, SW_DEST_EST};
end
if (xdst != 'hx && ydst != 'hx) begin
if (XB_ADDR_X == 0 && compute_switch_tdest == SW_DEST_WST)
$display("Illegal route chosen: WEST. xdst=%d, ydst=%d, xaddr=%d, yaddr=%d", xdst, ydst, XB_ADDR_X, XB_ADDR_Y);
if (XB_ADDR_X == DIM_SIZE-1 && compute_switch_tdest == SW_DEST_EST)
$display("Illegal route chosen: EAST. xdst=%d, ydst=%d, xaddr=%d, yaddr=%d", xdst, ydst, XB_ADDR_X, XB_ADDR_Y);
if (XB_ADDR_Y == 0 && compute_switch_tdest == SW_DEST_NOR)
$display("Illegal route chosen: NORTH. xdst=%d, ydst=%d, xaddr=%d, yaddr=%d", xdst, ydst, XB_ADDR_X, XB_ADDR_Y);
if (XB_ADDR_Y == DIM_SIZE-1 && compute_switch_tdest == SW_DEST_SOU)
$display("Illegal route chosen: SOUTH. xdst=%d, ydst=%d, xaddr=%d, yaddr=%d", xdst, ydst, XB_ADDR_X, XB_ADDR_Y);
end
//$display("xdst=%d, ydst=%d, xaddr=%d, yaddr=%d, dst=%d", xdst, ydst, XB_ADDR_X, XB_ADDR_Y, compute_switch_tdest);
end
endfunction
// The compute_switch_alloc function is the switch allocation function
// i.e. it chooses which input port reserves the switch for packet transfer.
// After the switch is allocated, all other ports will be backpressured until
// the packet finishes transferring.
function [2:0] compute_switch_alloc;
input [4:0] pkt_waiting;
input [2:0] last_alloc;
begin
if (pkt_waiting == 5'b00000) begin
compute_switch_alloc = SW_DEST_TER;
end else if (pkt_waiting == 5'b00001) begin
compute_switch_alloc = SW_DEST_TER;
end else if (pkt_waiting == 5'b00010) begin
compute_switch_alloc = SW_DEST_WST;
end else if (pkt_waiting == 5'b00100) begin
compute_switch_alloc = SW_DEST_EST;
end else if (pkt_waiting == 5'b01000) begin
compute_switch_alloc = SW_DEST_NOR;
end else if (pkt_waiting == 5'b10000) begin
compute_switch_alloc = SW_DEST_SOU;
end else begin
if (SWITCH_ALLOC == "PRIO") begin
// Priority: South > East > North > West > Term
if (pkt_waiting[SW_DEST_SOU])
compute_switch_alloc = SW_DEST_SOU;
else if (pkt_waiting[SW_DEST_EST])
compute_switch_alloc = SW_DEST_EST;
else if (pkt_waiting[SW_DEST_NOR])
compute_switch_alloc = SW_DEST_NOR;
else if (pkt_waiting[SW_DEST_WST])
compute_switch_alloc = SW_DEST_WST;
else
compute_switch_alloc = SW_DEST_TER;
end else begin
// Round-robin
if (pkt_waiting[(last_alloc + 3'd1) % SW_NUM_DESTS])
compute_switch_alloc = (last_alloc + 3'd1) % SW_NUM_DESTS;
else if (pkt_waiting[(last_alloc + 3'd2) % SW_NUM_DESTS])
compute_switch_alloc = (last_alloc + 3'd2) % SW_NUM_DESTS;
else if (pkt_waiting[(last_alloc + 3'd3) % SW_NUM_DESTS])
compute_switch_alloc = (last_alloc + 3'd3) % SW_NUM_DESTS;
else if (pkt_waiting[(last_alloc + 3'd4) % SW_NUM_DESTS])
compute_switch_alloc = (last_alloc + 3'd4) % SW_NUM_DESTS;
else
compute_switch_alloc = last_alloc;
end
end
//$display("pkt_waiting=%b, alloc=%d, last_alloc=%d", pkt_waiting, compute_switch_alloc, last_alloc);
end
endfunction
// -------------------------------------------------
// Input buffers
// -------------------------------------------------
wire [WIDTH-1:0] ter_i_tdata;
wire [3:0] ter_i_tdest;
wire ter_i_tlast;
wire ter_i_tvalid;
wire ter_i_tready;
// Data coming in from the terminal is gated until a full packet arrives
// in order to minimize the switch allocation time per packet.
axi_packet_gate #(
.WIDTH(WIDTH), .SIZE(TERM_BUFF_SIZE)
) term_in_pkt_gate_i (
.clk (clk),
.reset (reset),
.clear (1'b0),
.i_tdata (s_axis_ter_tdata),
.i_tlast (s_axis_ter_tlast),
.i_tvalid (s_axis_ter_tvalid),
.i_tready (s_axis_ter_tready),
.i_terror (1'b0),
.o_tdata (ter_i_tdata),
.o_tlast (ter_i_tlast),
.o_tvalid (ter_i_tvalid),
.o_tready (ter_i_tready)
);
assign ter_i_tdest = compute_switch_tdest(ter_i_tdata, SW_DEST_TER);
wire [WIDTH-1:0] wst_i_tdata, est_i_tdata, nor_i_tdata, sou_i_tdata;
wire [3:0] wst_i_tdest, est_i_tdest, nor_i_tdest, sou_i_tdest;
wire wst_i_tlast, est_i_tlast, nor_i_tlast, sou_i_tlast;
wire wst_i_tvalid, est_i_tvalid, nor_i_tvalid, sou_i_tvalid;
wire wst_i_tready, est_i_tready, nor_i_tready, sou_i_tready;
axis_ingress_vc_buff #(
.WIDTH(WIDTH), .NUM_VCS(1),
.SIZE(XB_BUFF_SIZE),
.ROUTING(ROUTING_ALLOC)
) wst_in_vc_buf_i (
.clk (clk),
.reset (reset),
.s_axis_tdata (s_axis_wst_tdata),
.s_axis_tdest (s_axis_wst_tdest),
.s_axis_tlast (s_axis_wst_tlast),
.s_axis_tvalid (s_axis_wst_tvalid),
.s_axis_tready (s_axis_wst_tready),
.m_axis_tdata (wst_i_tdata),
.m_axis_tlast (wst_i_tlast),
.m_axis_tvalid (wst_i_tvalid),
.m_axis_tready (wst_i_tready)
);
assign wst_i_tdest = compute_switch_tdest(wst_i_tdata, SW_DEST_WST);
axis_ingress_vc_buff #(
.WIDTH(WIDTH), .NUM_VCS(1),
.SIZE(XB_BUFF_SIZE),
.ROUTING(ROUTING_ALLOC)
) est_in_vc_buf_i (
.clk (clk),
.reset (reset),
.s_axis_tdata (s_axis_est_tdata),
.s_axis_tdest (s_axis_est_tdest),
.s_axis_tlast (s_axis_est_tlast),
.s_axis_tvalid (s_axis_est_tvalid),
.s_axis_tready (s_axis_est_tready),
.m_axis_tdata (est_i_tdata),
.m_axis_tlast (est_i_tlast),
.m_axis_tvalid (est_i_tvalid),
.m_axis_tready (est_i_tready)
);
assign est_i_tdest = compute_switch_tdest(est_i_tdata, SW_DEST_EST);
axis_ingress_vc_buff #(
.WIDTH(WIDTH), .NUM_VCS(2), // Only north-south traffic has VCs
.SIZE(XB_BUFF_SIZE),
.ROUTING(ROUTING_ALLOC)
) nor_in_vc_buf_i (
.clk (clk),
.reset (reset),
.s_axis_tdata (s_axis_nor_tdata),
.s_axis_tdest (s_axis_nor_tdest),
.s_axis_tlast (s_axis_nor_tlast),
.s_axis_tvalid (s_axis_nor_tvalid),
.s_axis_tready (s_axis_nor_tready),
.m_axis_tdata (nor_i_tdata),
.m_axis_tlast (nor_i_tlast),
.m_axis_tvalid (nor_i_tvalid),
.m_axis_tready (nor_i_tready)
);
assign nor_i_tdest = compute_switch_tdest(nor_i_tdata, SW_DEST_NOR);
axis_ingress_vc_buff #(
.WIDTH(WIDTH), .NUM_VCS(2), // Only north-south traffic has VCs
.SIZE(XB_BUFF_SIZE),
.ROUTING(ROUTING_ALLOC)
) sou_in_vc_buf_i (
.clk (clk),
.reset (reset),
.s_axis_tdata (s_axis_sou_tdata),
.s_axis_tdest (s_axis_sou_tdest),
.s_axis_tlast (s_axis_sou_tlast),
.s_axis_tvalid (s_axis_sou_tvalid),
.s_axis_tready (s_axis_sou_tready),
.m_axis_tdata (sou_i_tdata),
.m_axis_tlast (sou_i_tlast),
.m_axis_tvalid (sou_i_tvalid),
.m_axis_tready (sou_i_tready)
);
assign sou_i_tdest = compute_switch_tdest(sou_i_tdata, SW_DEST_SOU);
//-------------------------------------------------
// Switch
//-------------------------------------------------
// Track the input packet state
localparam [0:0] PKT_ST_HEAD = 1'b0;
localparam [0:0] PKT_ST_BODY = 1'b1;
reg [0:0] pkt_state = PKT_ST_HEAD;
// The switch only accept packets on a single port at a time.
wire sw_in_ready = |({sou_i_tready, nor_i_tready, est_i_tready, wst_i_tready, ter_i_tready});
wire sw_in_valid = |({sou_i_tvalid, nor_i_tvalid, est_i_tvalid, wst_i_tvalid, ter_i_tvalid});
wire sw_in_last = |({sou_i_tlast & sou_i_tvalid, nor_i_tlast & nor_i_tvalid,
est_i_tlast & est_i_tvalid, wst_i_tlast & wst_i_tvalid,
ter_i_tlast & ter_i_tvalid});
always @(posedge clk) begin
if (reset) begin
pkt_state <= PKT_ST_HEAD;
end else if (sw_in_valid & sw_in_ready) begin
pkt_state <= sw_in_last ? PKT_ST_HEAD : PKT_ST_BODY;
end
end
// The switch requires the allocation to stay valid until the
// end of the packet. We also might need to keep the previous
// packet's allocation to compute the current one
wire [2:0] switch_alloc;
reg [2:0] prev_switch_alloc = SW_DEST_TER;
reg [2:0] pkt_switch_alloc = SW_DEST_TER;
always @(posedge clk) begin
if (reset) begin
prev_switch_alloc <= SW_DEST_TER;
pkt_switch_alloc <= SW_DEST_TER;
end else if (sw_in_valid & sw_in_ready) begin
if (pkt_state == PKT_ST_HEAD)
pkt_switch_alloc <= switch_alloc;
if (sw_in_last)
prev_switch_alloc <= switch_alloc;
end
end
assign switch_alloc = (sw_in_valid && pkt_state == PKT_ST_HEAD) ?
compute_switch_alloc({sou_i_tvalid, nor_i_tvalid, est_i_tvalid, wst_i_tvalid, ter_i_tvalid}, prev_switch_alloc) :
pkt_switch_alloc;
wire ter_tdest_discard;
axis_switch #(
.DATA_W(WIDTH), .DEST_W(1), .IN_PORTS(5), .OUT_PORTS(5)
) switch_i (
.clk (clk),
.reset (reset),
.s_axis_tdata ({sou_i_tdata , nor_i_tdata , est_i_tdata , wst_i_tdata , ter_i_tdata }),
.s_axis_tdest ({sou_i_tdest , nor_i_tdest , est_i_tdest , wst_i_tdest , ter_i_tdest }),
.s_axis_tlast ({sou_i_tlast , nor_i_tlast , est_i_tlast , wst_i_tlast , ter_i_tlast }),
.s_axis_tvalid ({sou_i_tvalid, nor_i_tvalid, est_i_tvalid, wst_i_tvalid, ter_i_tvalid}),
.s_axis_tready ({sou_i_tready, nor_i_tready, est_i_tready, wst_i_tready, ter_i_tready}),
.s_axis_alloc (switch_alloc),
.m_axis_tdata ({m_axis_sou_tdata, m_axis_nor_tdata, m_axis_est_tdata, m_axis_wst_tdata, m_axis_ter_tdata }),
.m_axis_tdest ({m_axis_sou_tdest, m_axis_nor_tdest, m_axis_est_tdest, m_axis_wst_tdest, ter_tdest_discard}),
.m_axis_tlast ({m_axis_sou_tlast, m_axis_nor_tlast, m_axis_est_tlast, m_axis_wst_tlast, m_axis_ter_tlast }),
.m_axis_tvalid ({m_axis_sou_tvalid, m_axis_nor_tvalid, m_axis_est_tvalid, m_axis_wst_tvalid, m_axis_ter_tvalid}),
.m_axis_tready ({m_axis_sou_tready, m_axis_nor_tready, m_axis_est_tready, m_axis_wst_tready, m_axis_ter_tready})
);
endmodule
|