1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
//
// Copyright 2012 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Description:
// Holds packets in a FIFO until they are complete. This allows buffering
// slowly-built packets so they don't clog up downstream logic. If o_tready
// is held high, this module guarantees that o_tvalid will not be deasserted
// until a full packet is transferred. This module can also optionally drop
// a packet if the i_terror bit is asserted along with i_tlast. This allows
// discarding packet, say, if a CRC check fails.
// NOTE:
// - The maximum size of a packet that can pass through this module is
// 2^SIZE lines. If a larger packet is sent, this module will lock up.
// - Assuming that upstream is valid and downstream is ready, the maximum
// in to out latency per packet is (2^SIZE + 2) clock cycles.
// 2^SIZE because this module gates a packet, 1 cycle for the RAM read and
// 1 more cycle for the output register. This is not guaranteed behavior though.
// - The USE_AS_BUFF parameter can be used to treat this packet gate as
// a multi-packet buffer. When USE_AS_BUFF=0, the max number of packets
// (regardless of size) that the module can store is 2. When USE_AS_BUFF=1,
// the entire storage of this module can be used to buffer packets but at
// the cost of some additional RAM.
module axi_packet_gate #(
parameter WIDTH = 64, // Width of datapath
parameter SIZE = 10, // log2 of the buffer size (must be >= MTU of packet)
parameter USE_AS_BUFF = 0 // Allow the packet gate to be used as a buffer (uses more RAM)
) (
input wire clk,
input wire reset,
input wire clear,
input wire [WIDTH-1:0] i_tdata,
input wire i_tlast,
input wire i_terror,
input wire i_tvalid,
output wire i_tready,
output reg [WIDTH-1:0] o_tdata = {WIDTH{1'b0}},
output reg o_tlast = 1'b0,
output reg o_tvalid = 1'b0,
input wire o_tready
);
localparam [SIZE-1:0] ADDR_ZERO = {SIZE{1'b0}};
localparam [SIZE-1:0] ADDR_ONE = {{(SIZE-1){1'b0}}, 1'b1};
// -------------------------------------------
// RAM block that will hold pkts
// -------------------------------------------
wire wr_en, rd_en;
wire [WIDTH:0] wr_data, rd_data;
reg [SIZE-1:0] wr_addr = ADDR_ZERO, rd_addr = ADDR_ZERO;
// We need to instantiate a simple dual-port RAM here so
// we use the ram_2port module with one read port and one
// write port and "NO-CHANGE" mode.
ram_2port #(
.DWIDTH (WIDTH+1), .AWIDTH(SIZE),
.RW_MODE("NO-CHANGE"), .OUT_REG(0)
) ram_i (
.clka (clk), .ena(1'b1), .wea(wr_en),
.addra(wr_addr), .dia(wr_data), .doa(),
.clkb (clk), .enb(rd_en), .web(1'b0),
.addrb(rd_addr), .dib(), .dob(rd_data)
);
// FIFO empty/full logic. The condition for both
// empty and full is when rd_addr == wr_addr. However,
// it matters if we approach that case from the low side
// or the high side. So keep track of the almost empty/full
// state for determine if the next transaction will cause
// the FIFO to be truly empty or full.
reg ram_full = 1'b0, ram_empty = 1'b1;
wire almost_full = (wr_addr == rd_addr - ADDR_ONE);
wire almost_empty = (wr_addr == rd_addr + ADDR_ONE);
always @(posedge clk) begin
if (reset | clear) begin
ram_full <= 1'b0;
end else begin
if (almost_full) begin
if (wr_en & ~rd_en)
ram_full <= 1'b1;
end else begin
if (~wr_en & rd_en)
ram_full <= 1'b0;
end
end
end
always @(posedge clk) begin
if (reset | clear) begin
ram_empty <= 1'b1;
end else begin
if (almost_empty) begin
if (rd_en & ~wr_en)
ram_empty <= 1'b1;
end else begin
if (~rd_en & wr_en)
ram_empty <= 1'b0;
end
end
end
// -------------------------------------------
// Address FIFO
// -------------------------------------------
// The address FIFO will hold the write address
// for the last line in a non-errant packet
wire [SIZE-1:0] afifo_i_tdata, afifo_o_tdata;
wire afifo_i_tvalid, afifo_o_tvalid, afifo_i_tready, afifo_o_tready;
axi_fifo #(.WIDTH(SIZE), .SIZE(USE_AS_BUFF==1 ? SIZE : 1)) addr_fifo_i (
.clk(clk), .reset(reset), .clear(clear),
.i_tdata(afifo_i_tdata), .i_tvalid(afifo_i_tvalid), .i_tready(afifo_i_tready),
.o_tdata(afifo_o_tdata), .o_tvalid(afifo_o_tvalid), .o_tready(afifo_o_tready),
.space(), .occupied()
);
// -------------------------------------------
// Write state machine
// -------------------------------------------
reg [SIZE-1:0] wr_head_addr = ADDR_ZERO;
assign i_tready = ~ram_full & afifo_i_tready;
assign wr_en = i_tvalid & i_tready;
assign wr_data = {i_tlast, i_tdata};
always @(posedge clk) begin
if (reset | clear) begin
wr_addr <= ADDR_ZERO;
wr_head_addr <= ADDR_ZERO;
end else begin
if (wr_en) begin
if (i_tlast) begin
if (i_terror) begin
// Incoming packet had an error. Rewind the write
// pointer and pretend that a packet never came in.
wr_addr <= wr_head_addr;
end else begin
// Incoming packet had no error, advance wr_addr and
// wr_head_addr for the next packet.
wr_addr <= wr_addr + ADDR_ONE;
wr_head_addr <= wr_addr + ADDR_ONE;
end
end else begin
// Packet is still in progress, only update wr_addr
wr_addr <= wr_addr + ADDR_ONE;
end
end
end
end
// Push the write address to the address FIFO if
// - It is the last one in the packet
// - The packet has no errors
assign afifo_i_tdata = wr_addr;
assign afifo_i_tvalid = ~ram_full & i_tvalid & i_tlast & ~i_terror;
// -------------------------------------------
// Read state machine
// -------------------------------------------
reg rd_data_valid = 1'b0;
wire update_out_reg;
// Data can be read if there is a valid last address in the
// address FIFO (signifying the end of an input packet) and
// if there is data available in RAM
wire ready_to_read = (~ram_empty) & afifo_o_tvalid;
// Pop from address FIFO once we have see the end of the pkt
assign afifo_o_tready = rd_en & (afifo_o_tdata == rd_addr);
// Read from RAM if
// - A full packet has been written AND
// - Output data is not valid OR is currently being transferred
assign rd_en = ready_to_read & (update_out_reg | ~rd_data_valid);
always @(posedge clk) begin
if (reset | clear) begin
rd_data_valid <= 1'b0;
rd_addr <= ADDR_ZERO;
end else begin
if (update_out_reg | ~rd_data_valid) begin
// Output data is not valid OR is currently being transferred
if (ready_to_read) begin
rd_data_valid <= 1'b1;
rd_addr <= rd_addr + ADDR_ONE;
end else begin
rd_data_valid <= 1'b0; // Don't read
end
end
end
end
// Instantiate an output register to break critical paths starting
// at the RAM module. When ram_2port is inferred as BRAM, the tools
// should absorb this register into the BRAM block without using
// SLICE resources.
always @(posedge clk) begin
if (reset | clear) begin
o_tvalid <= 1'b0;
end else if (update_out_reg) begin
o_tvalid <= rd_data_valid;
{o_tlast, o_tdata} <= rd_data;
end
end
// Update the output reg only *after* the downstream
// block has consumed the current value
assign update_out_reg = o_tready | ~o_tvalid;
endmodule
|