1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
|
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//! RFNoC specific digital down-conversion chain
module ddc #(
parameter SR_FREQ_ADDR = 0,
parameter SR_SCALE_IQ_ADDR = 1,
parameter SR_DECIM_ADDR = 2,
parameter SR_MUX_ADDR = 3,
parameter SR_COEFFS_ADDR = 4,
parameter PRELOAD_HBS = 1, // Preload half band filter state with 0s
parameter NUM_HB = 3,
parameter CIC_MAX_DECIM = 255,
parameter SAMPLE_WIDTH = 16,
parameter WIDTH = 24
)(
input clk, input reset,
input clear, // Resets everything except the CORDIC timed phase inc FIFO and phase inc
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input timed_set_stb, input [7:0] timed_set_addr, input [31:0] timed_set_data,
input [31:0] sample_in_tdata,
input sample_in_tvalid,
input sample_in_tlast,
output sample_in_tready,
input sample_in_tuser,
input sample_in_eob,
output [31:0] sample_out_tdata,
output sample_out_tvalid,
input sample_out_tready,
output sample_out_tlast
);
localparam cwidth = 25;
localparam zwidth = 24;
wire [31:0] sr_phase_inc, sr_phase_inc_timed_tdata;
wire sr_phase_inc_valid, sr_phase_inc_timed_tvalid, sr_phase_inc_timed_tready, sr_phase_inc_timed_tlast;
reg [31:0] phase_inc;
reg phase_inc_valid;
wire [SAMPLE_WIDTH*2-1:0] dds_in_tdata;
wire dds_in_tlast;
wire dds_in_tvalid;
wire dds_in_tready;
wire [SAMPLE_WIDTH*2-1:0] dds_in_fifo_tdata;
wire dds_in_fifo_tlast;
wire dds_in_fifo_tvalid;
wire dds_in_fifo_tready;
wire [WIDTH-1:0] dds_in_i_tdata;
wire [WIDTH-1:0] dds_in_q_tdata;
wire [WIDTH-1:0] dds_out_i_tdata;
wire [WIDTH-1:0] dds_out_q_tdata;
reg [WIDTH-1:0] phase_tdata;
wire [SAMPLE_WIDTH*2-1:0] dds_in_sync_tdata;
wire dds_in_sync_tvalid, dds_in_sync_tready, dds_in_sync_tlast;
wire [WIDTH-1:0] phase_sync_tdata;
wire phase_sync_tvalid, phase_sync_tready, phase_sync_tlast;
wire phase_tvalid, phase_tready, phase_tlast;
wire dds_out_tlast;
wire dds_out_tvalid;
wire [15:0] dds_input_fifo_space, dds_input_fifo_occupied;
wire [17:0] scale_factor;
wire last_cic;
wire last_cic_decimate_in;
wire strobe_dds_clip;
wire [WIDTH-1:0] i_dds_clip, q_dds_clip;
wire [WIDTH-1:0] i_cic, q_cic;
wire [46:0] i_hb1, q_hb1;
wire [46:0] i_hb2, q_hb2;
wire [47:0] i_hb3, q_hb3;
wire sample_out_stb;
wire strobe_cic, strobe_hb1, strobe_hb2, strobe_hb3;
wire ddc_chain_tready;
reg [7:0] cic_decim_rate;
wire [7:0] cic_decim_rate_int;
wire rate_changed;
wire [SAMPLE_WIDTH-1:0] sample_in_i = {sample_in_tdata[31:16]};
wire [SAMPLE_WIDTH-1:0] sample_in_q = {sample_in_tdata[15:0]};
wire sample_mux_tready;
wire sample_mux_set_freq;
wire [SAMPLE_WIDTH-1:0] sample_mux_i, sample_mux_q;
wire realmode;
wire swap_iq;
reg [1:0] hb_rate;
wire [1:0] hb_rate_int;
wire [2:0] enable_hb = { hb_rate == 2'b11, hb_rate[1] == 1'b1, hb_rate != 2'b00 };
wire reload_go, reload_we1, reload_we2, reload_we3, reload_ld1, reload_ld2, reload_ld3;
wire [17:0] coef_din;
//phase incr settings regs and mux.
setting_reg #(.my_addr(SR_FREQ_ADDR)) set_freq (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(sr_phase_inc),.changed(sr_phase_inc_valid));
assign sr_phase_inc_timed_tready = sample_in_tvalid & sample_in_tready & sample_mux_set_freq;
axi_setting_reg #(
.ADDR(SR_FREQ_ADDR),
.USE_FIFO(1),
.FIFO_SIZE(5))
set_freq_timed (
.clk(clk), .reset(reset), .error_stb(),
.set_stb(timed_set_stb), .set_addr(timed_set_addr), .set_data(timed_set_data),
.o_tdata(sr_phase_inc_timed_tdata), .o_tlast(sr_phase_inc_timed_tlast), .o_tvalid(sr_phase_inc_timed_tvalid),
.o_tready(sr_phase_inc_timed_tready));
// Load phase increment depending on whether or not the settings bus write is
// a timed command. Non-timed commands get priority.
always @(posedge clk) begin
if (reset) begin
phase_inc <= 'd0;
phase_inc_valid <= 'd0;
end else begin
if (sr_phase_inc_valid) begin
phase_inc <= sr_phase_inc;
phase_inc_valid <= sr_phase_inc_valid;
end else if (sr_phase_inc_timed_tvalid & sr_phase_inc_timed_tready) begin
phase_inc <= sr_phase_inc_timed_tdata;
phase_inc_valid <= sr_phase_inc_timed_tvalid;
end else
phase_inc_valid <= 1'b0;
end
end
setting_reg #(.my_addr(SR_SCALE_IQ_ADDR), .width(18)) set_scale_iq (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
setting_reg #(.my_addr(SR_DECIM_ADDR), .width(10), .at_reset(1 /* No decimation */)) set_decim (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({hb_rate_int, cic_decim_rate_int}),.changed(rate_changed));
setting_reg #(.my_addr(SR_MUX_ADDR), .width(2)) set_mux (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({realmode,swap_iq}),.changed());
setting_reg #(.my_addr(SR_COEFFS_ADDR), .width(24)) set_coeffs (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({reload_ld3,reload_we3,reload_ld2,reload_we2,reload_ld1,reload_we1,coef_din}),.changed(reload_go));
// Prevent changing rate while processing samples as this
// will corrupt the output
reg active, rate_changed_hold, rate_changed_stb;
always @(posedge clk) begin
if (reset) begin
active <= 1'b0;
rate_changed_hold <= 1'b0;
rate_changed_stb <= 1'b0;
cic_decim_rate <= 'd1;
hb_rate <= 'd0;
end else begin
if (clear) begin
active <= 1'b0;
end else if (sample_in_tvalid & sample_in_tready) begin
active <= 1'b1;
end
if (rate_changed & active) begin
rate_changed_hold <= 1'b1;
end
if ((clear | ~active) & (rate_changed | rate_changed_hold)) begin
rate_changed_hold <= 1'b0;
rate_changed_stb <= 1'b1;
cic_decim_rate <= cic_decim_rate_int;
hb_rate <= hb_rate_int;
end else begin
rate_changed_stb <= 1'b0;
end
end
end
//doesn't need to be registered and now can have back pressure from dds
assign sample_mux_set_freq = sample_in_tuser;
assign sample_mux_i = swap_iq ? sample_in_q : sample_in_i;
assign sample_mux_q = realmode ? 'd0 : (swap_iq ? sample_in_i : sample_in_q);
/** Phase accumulator, Xilinx DDS/Complex Mult **/
//connect samples to dds
assign dds_in_tdata = {sample_mux_i,sample_mux_q};
assign dds_in_tvalid = sample_in_tvalid & ddc_chain_tready; //if the rest of the chain isn't ready, then halt all data flow. this should help with rate changes...
assign dds_in_tlast = sample_in_tlast;
assign sample_in_tready = dds_in_tready & ddc_chain_tready;
assign phase_tvalid = dds_in_tvalid;
assign phase_tlast = dds_in_tlast;
// NCO
always @(posedge clk) begin
if (reset | clear | (phase_inc_valid & sr_phase_inc_timed_tready)) begin
phase_tdata <= 0;
end else if (dds_in_tvalid & dds_in_tready) begin //only increment phase when data is ready
phase_tdata <= phase_tdata + phase_inc[31:8];
end
end
// Sync the two path's pipeline delay.
// This is needed to ensure that applying the phase update happens on the
// correct sample regardless of differing downstream path delays.
axi_sync #(
.SIZE(2),
.WIDTH_VEC({WIDTH,2*SAMPLE_WIDTH}), // Vector of widths, each width is defined by a 32-bit value
.FIFO_SIZE(0))
axi_sync (
.clk(clk), .reset(reset), .clear(clear),
.i_tdata({phase_tdata,dds_in_tdata}),
.i_tlast({phase_tlast,dds_in_tlast}),
.i_tvalid({phase_tvalid,dds_in_tvalid}),
.i_tready({phase_tready,dds_in_tready}),
.o_tdata({phase_sync_tdata,dds_in_sync_tdata}),
.o_tlast({phase_sync_tlast,dds_in_sync_tlast}),
.o_tvalid({phase_sync_tvalid,dds_in_sync_tvalid}),
.o_tready({phase_sync_tready,dds_in_sync_tready}));
//hold data to align with dds pipelining
axi_fifo #(.WIDTH(2*SAMPLE_WIDTH+1), .SIZE(5)) dds_input_fifo
(.clk(clk), .reset(reset), .clear(clear),
.i_tdata({dds_in_sync_tlast,dds_in_sync_tdata}), .i_tvalid(dds_in_sync_tvalid), .i_tready(dds_in_sync_tready),
.o_tdata({dds_in_fifo_tlast,dds_in_fifo_tdata}), .o_tvalid(dds_in_fifo_tvalid), .o_tready(dds_in_fifo_tready),
.space(dds_input_fifo_space), .occupied(dds_input_fifo_occupied)
);
// after fifo, do q quick sign extend op to get up to 24 bits. to match how the cordic deals with the data path.
// add extra bits to fit the dds width, 5 bits added here
sign_extend #(
.bits_in(SAMPLE_WIDTH), .bits_out(WIDTH))
sign_extend_dds_i (
.in({dds_in_fifo_tdata[2*SAMPLE_WIDTH-1:SAMPLE_WIDTH]}), .out(dds_in_i_tdata));
sign_extend #(
.bits_in(SAMPLE_WIDTH), .bits_out(WIDTH))
sign_extend_dds_q (
.in({dds_in_fifo_tdata[SAMPLE_WIDTH-1:0]}), .out(dds_in_q_tdata));
dds_freq_tune dds_freq_tune_inst (
.clk(clk),
.reset(reset | clear),
.eob(sample_in_eob),
.rate_changed(rate_changed_hold),
.dds_input_fifo_occupied(dds_input_fifo_occupied),
/* IQ input */
.s_axis_din_tlast(dds_in_fifo_tlast),
.s_axis_din_tvalid(dds_in_fifo_tvalid),
.s_axis_din_tready(dds_in_fifo_tready),
.s_axis_din_tdata({dds_in_q_tdata, dds_in_i_tdata}), //48 = WIDTH*2
/* Phase input from NCO */
.s_axis_phase_tvalid(phase_sync_tvalid),
.s_axis_phase_tready(phase_sync_tready), // used in the axi_sync
.s_axis_phase_tlast(phase_sync_tlast),
.s_axis_phase_tdata(phase_sync_tdata), //24 bit = WIDTH
/* IQ output */
.m_axis_dout_tlast(dds_out_tlast),
.m_axis_dout_tvalid(dds_out_tvalid),
.m_axis_dout_tready(ddc_chain_tready),
.m_axis_dout_tdata({dds_out_q_tdata, dds_out_i_tdata})
);
//48 = WIDTH*2
//chop off top byte because it's not actually used and we want to match expected gain/bit use found in cordic impl
assign i_dds_clip = {dds_out_i_tdata[15:0],8'h00};
assign q_dds_clip = {dds_out_q_tdata[15:0],8'h00};
assign strobe_dds_clip = dds_out_tvalid & sample_out_tready;
assign last_cic_decimate_in = dds_out_tlast;
/** CIC DECIMATE **/
cic_decimate #(.WIDTH(WIDTH), .N(4), .MAX_RATE(CIC_MAX_DECIM)) cic_decimate_i (
.clk(clk), .reset(reset | clear),
.rate_stb(rate_changed_stb), .rate(cic_decim_rate), .strobe_in(strobe_dds_clip), .strobe_out(strobe_cic),
.last_in(last_cic_decimate_in), .last_out(last_cic), .signal_in(i_dds_clip), .signal_out(i_cic));
cic_decimate #(.WIDTH(WIDTH), .N(4), .MAX_RATE(CIC_MAX_DECIM)) cic_decimate_q (
.clk(clk), .reset(reset | clear),
.rate_stb(rate_changed_stb), .rate(cic_decim_rate), .strobe_in(strobe_dds_clip), .strobe_out(),
.last_in(1'b0), .last_out(), .signal_in(q_dds_clip), .signal_out(q_cic));
// Halfbands
wire nd1, nd2, nd3;
wire rfd1, rfd2, rfd3;
wire rdy1, rdy2, rdy3;
wire data_valid1, data_valid2, data_valid3;
localparam HB1_SCALE = 18;
localparam HB2_SCALE = 18;
localparam HB3_SCALE = 18;
// Track last sample as it propagates through the half band filters
// Note: Delays calibrated for specific pipeline delay in each hb filter
reg [5:0] hb1_in_cnt, hb2_in_cnt, hb3_in_cnt;
reg [4:0] hb1_out_cnt, hb2_out_cnt, hb3_out_cnt;
reg [4:0] hb1_last_cnt, hb2_last_cnt, hb3_last_cnt;
reg hb1_last_set, hb2_last_set, hb3_last_set;
reg last_hb1, last_hb2, last_hb3;
always @(posedge clk) begin
if (reset | clear) begin
hb1_in_cnt <= 'd0;
hb2_in_cnt <= 'd0;
hb3_in_cnt <= 'd0;
hb1_out_cnt <= 'd0;
hb2_out_cnt <= 'd0;
hb3_out_cnt <= 'd0;
hb1_last_cnt <= 'd0;
hb2_last_cnt <= 'd0;
hb3_last_cnt <= 'd0;
hb1_last_set <= 1'b0;
hb2_last_set <= 1'b0;
hb3_last_set <= 1'b0;
last_hb1 <= 1'b0;
last_hb2 <= 1'b0;
last_hb3 <= 1'b0;
end else begin
// HB1
if (strobe_cic & rfd1) begin
hb1_in_cnt <= hb1_in_cnt + 1'b1;
if (last_cic) begin
hb1_last_set <= 1'b1;
hb1_last_cnt <= hb1_in_cnt[5:1];
end
end
if (strobe_hb1) begin
hb1_out_cnt <= hb1_out_cnt + 1'b1;
end
// Avoid subtracting 1 from hb1_last_cnt by initializing hb1_out_cnt = 1
if (hb1_last_set & (hb1_out_cnt == hb1_last_cnt)) begin
last_hb1 <= 1'b1;
hb1_last_set <= 1'b0;
hb1_last_cnt <= 'd0;
end else if (last_hb1 & strobe_hb1 & rfd2) begin
last_hb1 <= 1'b0;
end
// HB2
if (strobe_hb1 & rfd2) begin
hb2_in_cnt <= hb2_in_cnt + 1'b1;
if (last_hb1) begin
hb2_last_set <= 1'b1;
hb2_last_cnt <= hb2_in_cnt[5:1];
end
end
if (strobe_hb2) begin
hb2_out_cnt <= hb2_out_cnt + 1'b1;
end
if (hb2_last_set & (hb2_out_cnt == hb2_last_cnt)) begin
last_hb2 <= 1'b1;
hb2_last_set <= 1'b0;
hb2_last_cnt <= 'd0;
end else if (last_hb2 & strobe_hb2 & rfd3) begin
last_hb2 <= 1'b0;
end
// HB3
if (strobe_hb2 & rfd3) begin
hb3_in_cnt <= hb3_in_cnt + 1'b1;
if (last_hb2) begin
hb3_last_set <= 1'b1;
hb3_last_cnt <= hb3_in_cnt[5:1];
end
end
if (strobe_hb3) begin
hb3_out_cnt <= hb3_out_cnt + 1'b1;
end
if (hb3_last_set & (hb3_out_cnt == hb3_last_cnt)) begin
last_hb3 <= 1'b1;
hb3_last_set <= 1'b0;
hb3_last_cnt <= 'd0;
end else if (last_hb3 & strobe_hb3) begin
last_hb3 <= 1'b0;
end
end
end
// Each filter will accept N-1 samples before outputting
// a sample. This logic "preloads" the pipeline with 0s
// so the first sample in pushes out a sample.
reg [5:0] hb1_cnt, hb2_cnt, hb3_cnt;
reg hb1_en, hb2_en, hb3_en, hb1_rdy, hb2_rdy, hb3_rdy;
generate
if (PRELOAD_HBS) begin
always @(posedge clk) begin
if (reset | clear) begin
hb1_cnt <= 0;
hb2_cnt <= 0;
hb3_cnt <= 0;
hb1_en <= 1'b1;
hb2_en <= 1'b1;
hb3_en <= 1'b1;
hb1_rdy <= 1'b0;
hb2_rdy <= 1'b0;
hb3_rdy <= 1'b0;
end else begin
if (hb1_en & rfd1) begin
if (hb1_cnt < 47) begin
hb1_cnt <= hb1_cnt + 1;
end else begin
hb1_en <= 1'b0;
end
end
if (data_valid1) begin
hb1_rdy <= 1'b1;
end
if (hb2_en & rfd2) begin
if (hb2_cnt < 47) begin
hb2_cnt <= hb2_cnt + 1;
end else begin
hb2_en <= 1'b0;
end
end
if (data_valid2) begin
hb2_rdy <= 1'b1;
end
if (hb3_en & rfd3) begin
if (hb3_cnt < 63) begin
hb3_cnt <= hb3_cnt + 1;
end else begin
hb3_en <= 1'b0;
end
end
if (data_valid3) begin
hb3_rdy <= 1'b1;
end
end
end
end else begin
always @(*) begin
hb1_en <= 1'b0;
hb2_en <= 1'b0;
hb3_en <= 1'b0;
hb1_rdy <= 1'b1;
hb2_rdy <= 1'b1;
hb3_rdy <= 1'b1;
end
end
endgenerate
assign ddc_chain_tready = sample_out_tready & hb1_rdy & hb2_rdy & hb3_rdy;
assign strobe_hb1 = data_valid1 & hb1_rdy;
assign strobe_hb2 = data_valid2 & hb2_rdy;
assign strobe_hb3 = data_valid3 & hb3_rdy;
assign nd1 = strobe_cic | hb1_en;
assign nd2 = strobe_hb1 | hb2_en;
assign nd3 = strobe_hb2 | hb3_en;
generate //no point in using a for loop generate because each hb is different.
if( NUM_HB > 0) begin
hbdec1 hbdec1 (
.clk(clk), // input clk
.sclr(reset | clear), // input sclr
.ce(1'b1), // input ce
.coef_ld(reload_go & reload_ld1), // input coef_ld
.coef_we(reload_go & reload_we1), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd1), // output rfd
.nd(nd1), // input nd
.din_1(i_cic), // input [23 : 0] din_1
.din_2(q_cic), // input [23 : 0] din_2
.rdy(rdy1), // output rdy
.data_valid(data_valid1), // output data_valid
.dout_1(i_hb1), // output [46 : 0] dout_1
.dout_2(q_hb1)); // output [46 : 0] dout_2
end else begin //if (NUM_HB <= 2)
assign rdy1 = 1'b1;
assign rfd1 = 1'b1;
assign data_valid1 = 1'b1;
assign i_hb1 = 'h0;
assign q_hb1 = 'h0;
end
if( NUM_HB > 1) begin
hbdec2 hbdec2 (
.clk(clk), // input clk
.sclr(reset | clear), // input sclr
.ce(1'b1), // input ce
.coef_ld(reload_go & reload_ld2), // input coef_ld
.coef_we(reload_go & reload_we2), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd2), // output rfd
.nd(nd2), // input nd
.din_1(i_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_1
.din_2(q_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_2
.rdy(rdy2), // output rdy
.data_valid(data_valid2), // output data_valid
.dout_1(i_hb2), // output [46 : 0] dout_1
.dout_2(q_hb2)); // output [46 : 0] dout_2
end else begin //if (NUM_HB <= 2)
assign rdy2 = 1'b1;
assign rfd2 = 1'b1;
assign data_valid2 = 1'b1;
assign i_hb2 = 'h0;
assign q_hb2 = 'h0;
end
if( NUM_HB > 2) begin
hbdec3 hbdec3 (
.clk(clk), // input clk
.sclr(reset | clear), // input sclr
.ce(1'b1), // input ce
.coef_ld(reload_go & reload_ld3), // input coef_ld
.coef_we(reload_go & reload_we3), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd3), // output rfd
.nd(nd3), // input nd
.din_1(i_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_1
.din_2(q_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_2
.rdy(rdy3), // output rdy
.data_valid(data_valid3), // output data_valid
.dout_1(i_hb3), // output [47 : 0] dout_1
.dout_2(q_hb3)); // output [47 : 0] dout_2
end else begin //if (NUM_HB <= 2)
assign rdy3 = 1'b1;
assign rfd3 = 1'b1;
assign data_valid3 = 1'b1;
assign i_hb3 = 'h0;
assign q_hb3 = 'h0;
end
endgenerate
reg [23:0] i_unscaled, q_unscaled;
reg strobe_unscaled;
reg last_unscaled;
//this state machine must be changed if the user wants 4 hbs
always @(posedge clk) begin
if (reset | clear) begin
i_unscaled <= 'd0;
q_unscaled <= 'd0;
last_unscaled <= 1'b0;
strobe_unscaled <= 1'b0;
end else begin
case(hb_rate)
2'd0 : begin
last_unscaled <= last_cic;
strobe_unscaled <= strobe_cic;
i_unscaled <= i_cic[23:0];
q_unscaled <= q_cic[23:0];
end
2'd1 : begin
last_unscaled <= last_hb1;
strobe_unscaled <= strobe_hb1;
i_unscaled <= i_hb1[23+HB1_SCALE:HB1_SCALE];
q_unscaled <= q_hb1[23+HB1_SCALE:HB1_SCALE];
end
2'd2 : begin
last_unscaled <= last_hb2;
strobe_unscaled <= strobe_hb2;
i_unscaled <= i_hb2[23+HB2_SCALE:HB2_SCALE];
q_unscaled <= q_hb2[23+HB2_SCALE:HB2_SCALE];
end
2'd3 : begin
last_unscaled <= last_hb3;
strobe_unscaled <= strobe_hb3;
i_unscaled <= i_hb3[23+HB3_SCALE:HB3_SCALE];
q_unscaled <= q_hb3[23+HB3_SCALE:HB3_SCALE];
end
endcase // case (hb_rate)
end
end
wire [42:0] i_scaled, q_scaled;
wire [23:0] i_clip, q_clip;
reg strobe_scaled;
reg last_scaled;
wire strobe_clip;
reg [1:0] last_clip;
MULT_MACRO #(
.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(25), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
SCALE_I (.P(i_scaled), // Multiplier output bus, width determined by WIDTH_P parameter
.A({i_unscaled[23],i_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(reset | clear)); // 1-bit input active high reset
MULT_MACRO #(
.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(25), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
SCALE_Q (.P(q_scaled), // Multiplier output bus, width determined by WIDTH_P parameter
.A({q_unscaled[23],q_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(reset | clear)); // 1-bit input active high reset
wire [31:0] sample_out;
reg sample_out_last;
always @(posedge clk) begin
if (reset | clear) begin
strobe_scaled <= 1'b0;
last_scaled <= 1'b0;
last_clip <= 'd0;
sample_out_last <= 1'b0;
end else begin
strobe_scaled <= strobe_unscaled;
last_scaled <= last_unscaled;
last_clip[1:0] <= {last_clip[0], last_scaled};
sample_out_last <= last_clip[1];
end
end
clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_i (
.clk(clk), .reset(reset | clear), .in(i_scaled[42:14]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip));
clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_q (
.clk(clk), .reset(reset | clear), .in(q_scaled[42:14]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out());
round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16), .DISABLE_SD(1)) round_i (
.clk(clk), .reset(reset | clear), .in(i_clip), .strobe_in(strobe_clip), .out(sample_out[31:16]), .strobe_out(sample_out_stb));
round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16), .DISABLE_SD(1)) round_q (
.clk(clk), .reset(reset | clear), .in(q_clip), .strobe_in(strobe_clip), .out(sample_out[15:0]), .strobe_out());
//FIFO_SIZE = 8 infers a bram fifo
strobed_to_axi #(
.WIDTH(32),
.FIFO_SIZE(8))
strobed_to_axi (
.clk(clk), .reset(reset), .clear(clear),
.in_stb(sample_out_stb), .in_data(sample_out), .in_last(sample_out_last),
.o_tdata(sample_out_tdata), .o_tlast(sample_out_tlast), .o_tvalid(sample_out_tvalid), .o_tready(sample_out_tready));
endmodule // ddc_chain
|