1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
/*
* f15_core.v
*
* Core of the fosphor IP
*
* Copyright (C) 2014,2015 Ettus Corporation LLC
* Copyright 2018 Ettus Research, a National Instruments Company
*
* SPDX-License-Identifier: LGPL-3.0-or-later
*
* vim: ts=4 sw=4
*/
`ifdef SIM
`default_nettype none
`endif
module f15_core (
input clk, input reset,
input clear_req,
input [ 1:0] cfg_random,
input [15:0] cfg_offset, input [15:0] cfg_scale,
input [15:0] cfg_trise, input [15:0] cfg_tdecay,
input [15:0] cfg_alpha, input [15:0] cfg_epsilon,
input [11:0] cfg_decim, input cfg_decim_changed,
input [ 1:0] cfg_wf_div, input cfg_wf_mode,
input [ 7:0] cfg_wf_decim, input cfg_wf_decim_changed,
input [31:0] i_tdata, input i_tlast, input i_tvalid, output i_tready,
output [31:0] o_hist_tdata, output o_hist_tlast, output o_hist_tvalid, input o_hist_tready, output o_hist_teob,
output [31:0] o_wf_tdata, output o_wf_tlast, output o_wf_tvalid, input o_wf_tready
);
// Signals
reg [31:0] in_data;
reg in_last;
reg in_valid;
reg in_ready;
wire [15:0] proc_real_0, proc_imag_0;
wire [15:0] proc_logpwr_12, proc_logpwr_end;
wire proc_last_0, proc_last_12, proc_last_end;
wire proc_valid_0, proc_valid_12, proc_valid_end;
reg [5:0] proc_binscan_addr_end;
reg proc_binscan_last_end;
reg proc_clear_end;
reg clear_pending;
wire rise_last_0, rise_last_15;
wire rise_valid_0, rise_valid_15, rise_valid_24;
wire [15:0] rise_logpwr_0;
wire [5:0] rise_pwrbin_5, rise_pwrbin_15;
reg [9:0] rise_addr_lsb_15;
wire [15:0] rise_addr_15, rise_addr_24;
wire [8:0] rise_intensity_18, rise_intensity_23;
reg [8:0] rise_intensity_24;
wire decay_last_0, decay_last_9;
wire decay_valid_0, decay_valid_9;
reg [ 9:0] decay_addr_lsb_0;
wire [15:0] decay_addr_0, decay_addr_9;
wire [8:0] decay_intensity_3, decay_intensity_8;
reg [8:0] decay_intensity_9;
wire decay_clear_0, decay_clear_9;
reg [10:0] sls_addr_0;
wire [10:0] sls_addr_6;
wire [35:0] sls_data_2, sls_data_6;
wire sls_last_0;
wire sls_valid_0, sls_valid_6;
wire [15:0] avgmh_logpwr_0, avgmh_logpwr_2;
wire avgmh_clear_0, avgmh_clear_2;
wire [11:0] avgmh_avg_2, avgmh_avg_6, avgmh_avg_9;
wire [11:0] avgmh_max_2, avgmh_max_6, avgmh_max_9;
wire [5:0] out_binaddr_0, out_binaddr_9;
wire out_binlast_0, out_binlast_9;
wire [33:0] out_hist_fifo_di;
wire out_hist_fifo_wren;
wire out_hist_fifo_afull;
wire [33:0] out_hist_fifo_do;
wire out_hist_fifo_rden;
wire out_hist_fifo_empty;
wire [11:0] wf_data_2, wf_data_5, wf_data_6;
wire [15:0] wf_logpwr_0, wf_logpwr_2;
wire [ 7:0] wf_out_data_5;
wire wf_last_0, wf_last_2, wf_out_last_5;
wire wf_valid_0, wf_valid_2, wf_out_valid_5;
reg [ 1:0] out_wf_cnt;
reg [32:0] out_wf_fifo_di;
reg out_wf_fifo_wren;
wire out_wf_fifo_afull;
wire [32:0] out_wf_fifo_do;
wire out_wf_fifo_rden;
wire out_wf_fifo_empty;
wire [31:0] rng;
// -----------------------------------------------------------------------
// Input
// -----------------------------------------------------------------------
always @(posedge clk)
begin
// Control
if (reset) begin
in_valid <= 1'b0;
in_ready <= 1'b0;
end else begin
// Valid flag
in_valid <= i_tvalid & i_tready;
// We know we can get a sample if :
// - Both outputs consumed a sample
// - Both FIFOs have enough space
in_ready <= (o_hist_tready & o_wf_tready) |
(~out_hist_fifo_afull & ~out_wf_fifo_afull);
end
// Data pipeline
in_data <= i_tdata;
in_last <= i_tlast;
end
assign i_tready = in_ready;
// -----------------------------------------------------------------------
// Processing chain
// -----------------------------------------------------------------------
// Input to this stage
assign proc_real_0 = in_data[31:16];
assign proc_imag_0 = in_data[15:0];
assign proc_last_0 = in_last;
assign proc_valid_0 = in_valid;
// Log power
f15_logpwr logpwr_I (
.in_real_0(proc_real_0),
.in_imag_0(proc_imag_0),
.out_12(proc_logpwr_12),
.rng(rng),
.random_mode(cfg_random),
.clk(clk),
.rst(reset)
);
// Aggregation
// Not supported ATM but this is where it would be
// Flag propagation
delay_bit #(12) dl_proc_last (proc_last_0, proc_last_12, clk);
delay_bit #(12) dl_proc_valid (proc_valid_0, proc_valid_12, clk);
// Even/Odd resequencing
f15_eoseq #(
.WIDTH(16)
) eoseq_I (
.in_data(proc_logpwr_12),
.in_valid(proc_valid_12),
.in_last(proc_last_12),
.out_data(proc_logpwr_end),
.out_valid(proc_valid_end),
.out_last(proc_last_end),
.clk(clk),
.rst(reset)
);
// Bin address counter and clear process
// We do this here so we can propagate to every other stage with
// just delay lines
always @(posedge clk)
begin
if (reset) begin
proc_binscan_addr_end <= 6'd0;
proc_binscan_last_end <= 1'b0;
end else if (proc_valid_end & proc_last_end) begin
proc_binscan_addr_end <= proc_binscan_addr_end + 1;
proc_binscan_last_end <= (proc_binscan_addr_end == 6'h3e);
end
end
always @(posedge clk)
begin
if (reset) begin
clear_pending <= 1'b0;
proc_clear_end <= 1'b0;
end else begin
if (proc_valid_end & proc_last_end & proc_binscan_last_end) begin
clear_pending <= 1'b0;
proc_clear_end <= clear_pending;
end else begin
clear_pending <= clear_pending | clear_req;
end
end
end
// -----------------------------------------------------------------------
// Rise
// -----------------------------------------------------------------------
// Input of this stage
assign rise_last_0 = proc_last_end;
assign rise_valid_0 = proc_valid_end;
assign rise_logpwr_0 = proc_logpwr_end;
// Power Bin mapping
f15_binmap #(
.BIN_WIDTH(6),
.SCALE_FRAC_BITS(8)
) binmap_I (
.in_0(rise_logpwr_0),
.offset_0(cfg_offset),
.scale_0(cfg_scale),
.bin_5(rise_pwrbin_5),
.sat_ind_5(), // FIXME: Could be use to disable write ena (configurable)
.clk(clk),
.rst(reset)
);
// Delay
// (We need to make sure rise doesn't conflict with decay)
delay_bus #(10, 6) dl_pwrbin (rise_pwrbin_5, rise_pwrbin_15, clk);
delay_bit #(15) dl_valid (rise_valid_0, rise_valid_15, clk);
delay_bit #(15) dl_last (rise_last_0, rise_last_15, clk);
// Address
always @(posedge clk)
begin
if (reset)
rise_addr_lsb_15[9:0] <= 9'd0;
else if (rise_valid_15)
if (rise_last_15)
rise_addr_lsb_15 <= 9'd0;
else
rise_addr_lsb_15 <= rise_addr_lsb_15[9:0] + 1;
end
assign rise_addr_15 = { rise_pwrbin_15, rise_addr_lsb_15 };
// Exponential rise
f15_rise_decay #(
.WIDTH(9)
) rise_I (
.in_0(rise_intensity_18),
.out_5(rise_intensity_23),
.k_0(cfg_trise),
.ena_0(1'b1),
.mode_0(1'b0),
.rng(rng[15:0]),
.clk(clk),
.rst(reset)
);
// Need one more stage just for proper even/odd interlacing
always @(posedge clk)
rise_intensity_24 <= rise_intensity_23;
// Propagate control
delay_bit #(9) dl_rise_valid2 (rise_valid_15, rise_valid_24, clk);
delay_bus #(9, 16) dl_rise_addr2 (rise_addr_15, rise_addr_24, clk);
// -----------------------------------------------------------------------
// State storage
// -----------------------------------------------------------------------
f15_histo_mem #(
.ADDR_WIDTH(16)
) mem_I (
// Rise readout
.addr_AR(rise_addr_15),
.data_AR(rise_intensity_18),
.ena_AR(rise_valid_15),
// Rise writeback
.addr_AW(rise_addr_24),
.data_AW(rise_intensity_24),
.ena_AW(rise_valid_24),
// Decay readout
.addr_BR(decay_addr_0),
.data_BR(decay_intensity_3),
.ena_BR(decay_valid_0),
// Decay writeback
.addr_BW(decay_addr_9),
.data_BW(decay_intensity_9),
.ena_BW(decay_valid_9),
// Common
.clk(clk),
.rst(reset)
);
// -----------------------------------------------------------------------
// Decay & Clear
// -----------------------------------------------------------------------
// Input of this stage
assign decay_last_0 = proc_last_end;
assign decay_valid_0 = proc_valid_end;
assign decay_clear_0 = proc_clear_end;
// Address generation
always @(posedge clk)
begin
if (reset)
decay_addr_lsb_0 <= 10'd0;
else if (decay_valid_0)
if (decay_last_0)
decay_addr_lsb_0 <= 10'd0;
else
decay_addr_lsb_0 <= decay_addr_lsb_0 + 1;
end
assign decay_addr_0 = { proc_binscan_addr_end, decay_addr_lsb_0 };
// Exponential decay
f15_rise_decay #(
.WIDTH(9)
) decay_I (
.in_0(decay_intensity_3),
.out_5(decay_intensity_8),
.k_0(cfg_tdecay),
.ena_0(1'b1),
.mode_0(1'b1),
.rng(rng[15:0]),
.clk(clk),
.rst(reset)
);
// Need one more stage just for proper even/odd interlacing
// Also do the clear in there
always @(posedge clk)
if (decay_clear_9)
decay_intensity_9 <= 9'd0;
else
decay_intensity_9 <= decay_intensity_8;
// Propagate control
delay_bit #(9) dl_decay_valid (decay_valid_0, decay_valid_9, clk);
delay_bit #(9) dl_decay_last (decay_last_0, decay_last_9, clk);
delay_bit #(9) dl_decay_clear (decay_clear_0, decay_clear_9, clk);
delay_bus #(9, 16) dl_decay_addr (decay_addr_0, decay_addr_9, clk);
// -----------------------------------------------------------------------
// Shared line-storage
// -----------------------------------------------------------------------
// This is shared between the average/max-hold spectrum lines and the
// waterfall aggregation
// Input of this stage
assign sls_last_0 = proc_last_end;
assign sls_valid_0 = proc_valid_end;
// Address
always @(posedge clk)
begin
if (reset)
sls_addr_0 <= 11'd0;
else if (sls_valid_0)
if (sls_last_0)
sls_addr_0 <= 11'd0;
else
sls_addr_0 <= sls_addr_0 + 1;
end
delay_bus #(6, 11) dl_sls_addr (sls_addr_0, sls_addr_6, clk);
delay_bit #(6) dl_sls_valid (sls_valid_0, sls_valid_6, clk);
// Storage
f15_line_mem #(
.AWIDTH(11),
.DWIDTH(36)
) line_mem_I (
.rd_addr(sls_addr_0),
.rd_data(sls_data_2),
.rd_ena(sls_valid_0),
.wr_addr(sls_addr_6),
.wr_data(sls_data_6),
.wr_ena(sls_valid_6),
.clk(clk),
.rst(reset)
);
// Data mapping
assign avgmh_avg_2 = sls_data_2[11: 0];
assign avgmh_max_2 = sls_data_2[23:12];
assign wf_data_2 = sls_data_2[35:24];
assign sls_data_6[11: 0] = avgmh_avg_6;
assign sls_data_6[23:12] = avgmh_max_6;
assign sls_data_6[35:24] = wf_data_6;
// -----------------------------------------------------------------------
// Average and Max-Hold
// -----------------------------------------------------------------------
// Input of this stage
assign avgmh_logpwr_0 = proc_logpwr_end;
assign avgmh_clear_0 = proc_clear_end;
// Modify stage: Average
f15_avg #(
.Y_WIDTH(12),
.X_WIDTH(16)
) avg_I (
.yin_0(avgmh_avg_2),
.x_0(avgmh_logpwr_2),
.rng_0(rng[15:0]),
.alpha_0(cfg_alpha),
.clear_0(avgmh_clear_2),
.yout_4(avgmh_avg_6),
.clk(clk),
.rst(reset)
);
// Modify stage: Max Hold
f15_maxhold #(
.Y_WIDTH(12),
.X_WIDTH(16),
.FRAC_WIDTH(8)
) maxhold_I (
.yin_0(avgmh_max_2),
.x_0(avgmh_logpwr_2),
.rng_0(rng[15:0]),
.epsilon_0(cfg_epsilon),
.clear_0(avgmh_clear_2),
.yout_4(avgmh_max_6),
.clk(clk),
.rst(reset)
);
// Delays
delay_bus #(2, 16) dl_avgmh_logpwr (avgmh_logpwr_0, avgmh_logpwr_2, clk);
delay_bit #(2) dl_avgmh_clear (avgmh_clear_0, avgmh_clear_2, clk);
delay_bus #(3, 12) dl_avgmh_max (avgmh_max_6, avgmh_max_9, clk);
delay_bus #(3, 12) dl_avgmh_avg (avgmh_avg_6, avgmh_avg_9, clk);
// -----------------------------------------------------------------------
// Histogram Output
// -----------------------------------------------------------------------
// For the 'tap' to work, we need avmh and decay blocks to have the
// same number of pipeline stage and be right after proc.
// Input of this stage
assign out_binaddr_0 = proc_binscan_addr_end;
assign out_binlast_0 = proc_binscan_last_end;
// Delays
delay_bus #(9, 6) dl_out_binaddr (out_binaddr_0, out_binaddr_9, clk);
delay_bit #(9) dl_out_binlast (out_binlast_0, out_binlast_9, clk);
// Packetizer
f15_packetizer #(
.BIN_WIDTH(6),
.DECIM_WIDTH(12)
) packetizer_I (
.in_bin_addr(out_binaddr_9),
.in_bin_last(out_binlast_9),
.in_histo(decay_intensity_9[8:1]),
.in_spectra_max(avgmh_max_9[11:4]),
.in_spectra_avg(avgmh_avg_9[11:4]),
.in_last(decay_last_9),
.in_valid(decay_valid_9),
.out_data(out_hist_fifo_di[31:0]),
.out_last(out_hist_fifo_di[32]),
.out_eob(out_hist_fifo_di[33]),
.out_valid(out_hist_fifo_wren),
.cfg_decim(cfg_decim),
.cfg_decim_changed(cfg_decim_changed),
.clk(clk),
.rst(reset)
);
// FIFO
fifo_srl #(
.WIDTH(34),
.LOG2_DEPTH(6),
.AFULL_LEVEL(20)
) out_hist_fifo_I (
.di(out_hist_fifo_di),
.wren(out_hist_fifo_wren),
.afull(out_hist_fifo_afull),
.do(out_hist_fifo_do),
.rden(out_hist_fifo_rden),
.empty(out_hist_fifo_empty),
.clk(clk),
.rst(reset)
);
// AXI mapping
assign o_hist_tdata = out_hist_fifo_do[31:0];
assign o_hist_tlast = out_hist_fifo_do[32];
assign o_hist_teob = out_hist_fifo_do[33];
assign o_hist_tvalid = ~out_hist_fifo_empty;
assign out_hist_fifo_rden = ~out_hist_fifo_empty && o_hist_tready;
// -----------------------------------------------------------------------
// Waterfall Output
// -----------------------------------------------------------------------
// Input to this stage (synced to SLS)
assign wf_logpwr_0 = proc_logpwr_end;
assign wf_last_0 = proc_last_end;
assign wf_valid_0 = proc_valid_end;
// Delay some input signals
delay_bus #(2, 16) dl_wf_logpwr (wf_logpwr_0, wf_logpwr_2, clk);
delay_bit #(2) dl_wf_last (wf_last_0, wf_last_2, clk);
delay_bit #(2) dl_wf_valid (wf_valid_0, wf_valid_2, clk);
// Decimation / Aggregation
f15_wf_agg #(
.Y_WIDTH(12),
.X_WIDTH(16),
.DECIM_WIDTH(8)
) dut_wf (
.yin_0(wf_data_2),
.x_0(wf_logpwr_2),
.valid_0(wf_valid_2),
.last_0(wf_last_2),
.rng_0(rng[15:0]),
.yout_3(wf_data_5),
.zout_3(wf_out_data_5),
.zvalid_3(wf_out_valid_5),
.cfg_div(cfg_wf_div),
.cfg_mode(cfg_wf_mode),
.cfg_decim(cfg_wf_decim),
.cfg_decim_changed(cfg_wf_decim_changed),
.clk(clk),
.rst(reset)
);
// Delay some output signals
delay_bus #(1, 12) dl_wf_data (wf_data_5, wf_data_6, clk);
delay_bit #(3) dl_wf_out_last (wf_last_2, wf_out_last_5, clk);
// Pack into 32 bits words
always @(posedge clk)
begin
if (reset) begin
out_wf_fifo_di <= 0;
out_wf_fifo_wren <= 1'b0;
out_wf_cnt <= 2'b00;
end else begin
if (wf_out_valid_5) begin
if (wf_out_last_5) begin
out_wf_fifo_di <= { 1'b1, out_wf_fifo_di[23:0], wf_out_data_5 };
out_wf_fifo_wren <= 1'b1;
out_wf_cnt <= 2'b00;
end else begin
out_wf_fifo_di <= { 1'b0, out_wf_fifo_di[23:0], wf_out_data_5 };
out_wf_fifo_wren <= (out_wf_cnt == 2'b11);
out_wf_cnt <= out_wf_cnt + 1;
end
end else begin
out_wf_fifo_wren <= 1'b0;
end
end
end
// FIFO
fifo_srl #(
.WIDTH(33),
.LOG2_DEPTH(6),
.AFULL_LEVEL(20)
) out_wf_fifo_I (
.di(out_wf_fifo_di),
.wren(out_wf_fifo_wren),
.afull(out_wf_fifo_afull),
.do(out_wf_fifo_do),
.rden(out_wf_fifo_rden),
.empty(out_wf_fifo_empty),
.clk(clk),
.rst(reset)
);
// AXI mapping
assign o_wf_tdata = out_wf_fifo_do[31:0];
assign o_wf_tlast = out_wf_fifo_do[32];
assign o_wf_tvalid = ~out_wf_fifo_empty;
assign out_wf_fifo_rden = ~out_wf_fifo_empty && o_wf_tready;
// -----------------------------------------------------------------------
// Misc
// -----------------------------------------------------------------------
// RNG
`ifdef SIM
assign rng = 0;
`else
rng rng_I (rng, clk, reset);
`endif
endmodule // f15_core
|