1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
module noc_block_axi_dma_fifo #(
parameter NOC_ID = 64'hF1F0_D000_0000_0000,
parameter STR_SINK_FIFOSIZE = 11, //Input buffering to tolerate DMA (usually DRAM) latency variation
parameter MTU = 10, //Log2 of maximum packet size (in 8-byte words)
parameter NUM_FIFOS = 1, //Number of FIFOs that share the AXI4 memory space (max 4)
parameter BUS_CLK_RATE = 32'd166666666, //Frequency in Hz of bus_clk
parameter [NUM_FIFOS*30-1:0] DEFAULT_FIFO_BASE = {NUM_FIFOS{30'h00000000}}, //Default base addr for each FIFO (configurable via setting reg)
parameter [NUM_FIFOS*30-1:0] DEFAULT_FIFO_SIZE = {NUM_FIFOS{30'h01FFFFFF}}, //Default size of each FIFO (configurable via setting reg)
parameter [NUM_FIFOS*12-1:0] DEFAULT_BURST_TIMEOUT = {NUM_FIFOS{12'd256}}, //Timeout (in memory clock cycles) for issuing smaller than optimal bursts
parameter EXTENDED_DRAM_BIST = 0, //Prune out additional BIST features for production
parameter SIMULATION = 0 //Indicate if this is simulation or synthesis
)(
//
// Clocks and Resets
//
input bus_clk, input bus_rst,
input ce_clk, input ce_rst,
//
// RFNoC CHDR interface to crossbar
//
input [63:0] i_tdata, input i_tlast, input i_tvalid, output i_tready,
output [63:0] o_tdata, output o_tlast, output o_tvalid, input o_tready,
//
// AXI Memory Mapped Interface
//
// -- AXI Write address channel
output [(NUM_FIFOS*1)-1:0] m_axi_awid, // Write address ID. This signal is the identification tag for the write address signals
output [(NUM_FIFOS*32)-1:0] m_axi_awaddr, // Write address. The write address gives the address of the first transfer in a write burst
output [(NUM_FIFOS*8)-1:0] m_axi_awlen, // Burst length. The burst length gives the exact number of transfers in a burst.
output [(NUM_FIFOS*3)-1:0] m_axi_awsize, // Burst size. This signal indicates the size of each transfer in the burst.
output [(NUM_FIFOS*2)-1:0] m_axi_awburst, // Burst type. The burst type and the size information, determine how the address is calculated
output [(NUM_FIFOS*1)-1:0] m_axi_awlock, // Lock type. Provides additional information about the atomic characteristics of the transfer.
output [(NUM_FIFOS*4)-1:0] m_axi_awcache, // Memory type. This signal indicates how transactions are required to progress
output [(NUM_FIFOS*3)-1:0] m_axi_awprot, // Protection type. This signal indicates the privilege and security level of the transaction
output [(NUM_FIFOS*4)-1:0] m_axi_awqos, // Quality of Service, QoS. The QoS identifier sent for each write transaction
output [(NUM_FIFOS*4)-1:0] m_axi_awregion, // Region identifier. Permits a single physical interface on a slave to be re-used.
output [(NUM_FIFOS*1)-1:0] m_axi_awuser, // User signal. Optional User-defined signal in the write address channel.
output [(NUM_FIFOS*1)-1:0] m_axi_awvalid, // Write address valid. This signal indicates that the channel is signaling valid write addr
input [(NUM_FIFOS*1)-1:0] m_axi_awready, // Write address ready. This signal indicates that the slave is ready to accept an address
// -- AXI Write data channel.
output [(NUM_FIFOS*64)-1:0] m_axi_wdata, // Write data
output [(NUM_FIFOS*8)-1:0] m_axi_wstrb, // Write strobes. This signal indicates which byte lanes hold valid data.
output [(NUM_FIFOS*1)-1:0] m_axi_wlast, // Write last. This signal indicates the last transfer in a write burst
output [(NUM_FIFOS*1)-1:0] m_axi_wuser, // User signal. Optional User-defined signal in the write data channel.
output [(NUM_FIFOS*1)-1:0] m_axi_wvalid, // Write valid. This signal indicates that valid write data and strobes are available.
input [(NUM_FIFOS*1)-1:0] m_axi_wready, // Write ready. This signal indicates that the slave can accept the write data.
// -- AXI Write response channel signals
input [(NUM_FIFOS*1)-1:0] m_axi_bid, // Response ID tag. This signal is the ID tag of the write response.
input [(NUM_FIFOS*2)-1:0] m_axi_bresp, // Write response. This signal indicates the status of the write transaction.
input [(NUM_FIFOS*1)-1:0] m_axi_buser, // User signal. Optional User-defined signal in the write response channel.
input [(NUM_FIFOS*1)-1:0] m_axi_bvalid, // Write response valid. This signal indicates that the channel is signaling a valid response
output [(NUM_FIFOS*1)-1:0] m_axi_bready, // Response ready. This signal indicates that the master can accept a write response
// -- AXI Read address channel
output [(NUM_FIFOS*1)-1:0] m_axi_arid, // Read address ID. This signal is the identification tag for the read address group of signals
output [(NUM_FIFOS*32)-1:0] m_axi_araddr, // Read address. The read address gives the address of the first transfer in a read burst
output [(NUM_FIFOS*8)-1:0] m_axi_arlen, // Burst length. This signal indicates the exact number of transfers in a burst.
output [(NUM_FIFOS*3)-1:0] m_axi_arsize, // Burst size. This signal indicates the size of each transfer in the burst.
output [(NUM_FIFOS*2)-1:0] m_axi_arburst, // Burst type. The burst type and the size information determine how the address for each transfer
output [(NUM_FIFOS*1)-1:0] m_axi_arlock, // Lock type. This signal provides additional information about the atomic characteristics
output [(NUM_FIFOS*4)-1:0] m_axi_arcache, // Memory type. This signal indicates how transactions are required to progress
output [(NUM_FIFOS*3)-1:0] m_axi_arprot, // Protection type. This signal indicates the privilege and security level of the transaction
output [(NUM_FIFOS*4)-1:0] m_axi_arqos, // Quality of Service, QoS. QoS identifier sent for each read transaction.
output [(NUM_FIFOS*4)-1:0] m_axi_arregion, // Region identifier. Permits a single physical interface on a slave to be re-used
output [(NUM_FIFOS*1)-1:0] m_axi_aruser, // User signal. Optional User-defined signal in the read address channel.
output [(NUM_FIFOS*1)-1:0] m_axi_arvalid, // Read address valid. This signal indicates that the channel is signaling valid read addr
input [(NUM_FIFOS*1)-1:0] m_axi_arready, // Read address ready. This signal indicates that the slave is ready to accept an address
// -- AXI Read data channel
input [(NUM_FIFOS*1)-1:0] m_axi_rid, // Read ID tag. This signal is the identification tag for the read data group of signals
input [(NUM_FIFOS*64)-1:0] m_axi_rdata, // Read data.
input [(NUM_FIFOS*2)-1:0] m_axi_rresp, // Read response. This signal indicates the status of the read transfer
input [(NUM_FIFOS*1)-1:0] m_axi_rlast, // Read last. This signal indicates the last transfer in a read burst.
input [(NUM_FIFOS*1)-1:0] m_axi_ruser, // User signal. Optional User-defined signal in the read data channel.
input [(NUM_FIFOS*1)-1:0] m_axi_rvalid, // Read valid. This signal indicates that the channel is signaling the required read data.
output [(NUM_FIFOS*1)-1:0] m_axi_rready, // Read ready. This signal indicates that the master can accept the read data and response
output [63:0] debug
);
////////////////////////////////////////////////////////////
//
// RFNoC Shell
//
////////////////////////////////////////////////////////////
wire [(NUM_FIFOS*32)-1:0] set_data;
wire [(NUM_FIFOS*8)-1:0] set_addr;
wire [NUM_FIFOS-1:0] set_stb;
wire [(NUM_FIFOS*64)-1:0] rb_data;
wire [(NUM_FIFOS*64)-1:0] str_sink_tdata, str_src_tdata;
wire [NUM_FIFOS-1:0] str_sink_tlast, str_sink_tvalid, str_sink_tready, str_src_tlast, str_src_tvalid, str_src_tready;
wire [NUM_FIFOS-1:0] clear_tx_seqnum;
wire [(NUM_FIFOS*16)-1:0] src_sid, next_dst_sid;
noc_shell #(
.NOC_ID(NOC_ID),
.INPUT_PORTS(NUM_FIFOS),
.OUTPUT_PORTS(NUM_FIFOS),
.STR_SINK_FIFOSIZE({NUM_FIFOS{STR_SINK_FIFOSIZE[7:0]}}),
.USE_TIMED_CMDS(0)) // Settings bus transactions will occur at the vita time specified in the command packet
noc_shell (
.bus_clk(bus_clk), .bus_rst(bus_rst),
.i_tdata(i_tdata), .i_tlast(i_tlast), .i_tvalid(i_tvalid), .i_tready(i_tready),
.o_tdata(o_tdata), .o_tlast(o_tlast), .o_tvalid(o_tvalid), .o_tready(o_tready),
// Computer Engine Clock Domain
.clk(bus_clk), .reset(bus_rst),
// Control Sink
.set_data(set_data), .set_addr(set_addr), .set_stb(set_stb), .set_time(/* Unused */),
.rb_stb({NUM_FIFOS{1'b1}}), .rb_data(rb_data), .rb_addr(),
// Control Source
.cmdout_tdata(64'h0), .cmdout_tlast(1'b0), .cmdout_tvalid(1'b0), .cmdout_tready(),
.ackin_tdata(), .ackin_tlast(), .ackin_tvalid(), .ackin_tready(1'b1),
// Stream Sink
.str_sink_tdata(str_sink_tdata), .str_sink_tlast(str_sink_tlast), .str_sink_tvalid(str_sink_tvalid), .str_sink_tready(str_sink_tready),
// Stream Source
.str_src_tdata(str_src_tdata), .str_src_tlast(str_src_tlast), .str_src_tvalid(str_src_tvalid), .str_src_tready(str_src_tready),
// Stream IDs set by host
.src_sid(src_sid), // SID of this block
.next_dst_sid(next_dst_sid), // Next destination SID
.resp_in_dst_sid(), // Response destination SID for input stream responses / errors
.resp_out_dst_sid(), // Response destination SID for output stream responses / errors
// Misc
.vita_time(64'd0),
.clear_tx_seqnum(clear_tx_seqnum),
.debug(debug));
// NoC Shell registers 0 - 127,
// User register address space starts at 128
localparam SR_USER_REG_BASE = 128;
genvar i;
generate
for (i = 0; i < NUM_FIFOS; i = i + 1) begin:gen_dma_fifos
////////////////////////////////////////////////////////////
//
// AXI Wrapper
// Convert RFNoC Shell interface into AXI stream interface
//
////////////////////////////////////////////////////////////
wire [63:0] m_axis_data_tdata, s_axis_data_tdata;
wire m_axis_data_tlast, s_axis_data_tlast;
wire m_axis_data_tvalid, s_axis_data_tvalid;
wire m_axis_data_tready, s_axis_data_tready;
assign m_axis_data_tdata = str_sink_tdata[(64*(i+1))-1:64*i];
assign m_axis_data_tlast = str_sink_tlast[i];
assign m_axis_data_tvalid = str_sink_tvalid[i];
assign str_sink_tready[i] = m_axis_data_tready;
reg first_line;
reg [11:0] seqnum;
wire [63:0] modified_header;
always @(posedge bus_clk) begin
if (bus_rst | clear_tx_seqnum[i]) begin
first_line <= 1'b1;
seqnum <= 12'd0;
end else begin
if (s_axis_data_tvalid & s_axis_data_tready) begin
if (s_axis_data_tlast) begin
first_line <= 1'b1;
seqnum <= seqnum + 1;
end else begin
first_line <= 1'b0;
end
end
end
end
wire [63:0] unused;
cvita_hdr_modify cvita_hdr_modify (
.header_in({s_axis_data_tdata,64'd0}),
.header_out({modified_header,unused}),
.use_pkt_type(1'b0), .pkt_type(),
.use_has_time(1'b0), .has_time(),
.use_eob(1'b0), .eob(),
.use_seqnum(1'b1), .seqnum(seqnum),
.use_length(1'b0), .length(),
.use_payload_length(1'b0), .payload_length(),
.use_src_sid(1'b1), .src_sid(src_sid[(16*(i+1))-1:16*i]),
.use_dst_sid(1'b1), .dst_sid(next_dst_sid[(16*(i+1))-1:16*i]),
.use_vita_time(1'b0), .vita_time());
assign str_src_tdata[(64*(i+1))-1:64*i] = first_line ? modified_header : s_axis_data_tdata;
assign str_src_tlast[i] = s_axis_data_tlast;
assign str_src_tvalid[i] = s_axis_data_tvalid;
assign s_axis_data_tready = str_src_tready[i];
axi_dma_fifo #(
.SIMULATION(SIMULATION),
.DEFAULT_BASE(DEFAULT_FIFO_BASE[(30*(i+1))-1:30*i]),
.DEFAULT_MASK(~(DEFAULT_FIFO_SIZE[(30*(i+1))-1:30*i])),
.DEFAULT_TIMEOUT(DEFAULT_BURST_TIMEOUT[(12*(i+1))-1:12*i]),
.BUS_CLK_RATE(BUS_CLK_RATE),
.SR_BASE(SR_USER_REG_BASE),
.EXT_BIST(EXTENDED_DRAM_BIST),
.MAX_PKT_LEN(MTU))
axi_dma_fifo_i (
//
// Clocks and reset
//
.bus_clk(bus_clk), .bus_reset(bus_rst),
.dram_clk(ce_clk), .dram_reset(ce_rst),
//
// AXI Write address channel
//
.m_axi_awid (m_axi_awid[i]),
.m_axi_awaddr (m_axi_awaddr[(32*(i+1))-1:32*i]),
.m_axi_awlen (m_axi_awlen[(8*(i+1))-1:8*i]),
.m_axi_awsize (m_axi_awsize[(3*(i+1))-1:3*i]),
.m_axi_awburst (m_axi_awburst[(2*(i+1))-1:2*i]),
.m_axi_awlock (m_axi_awlock[i]),
.m_axi_awcache (m_axi_awcache[(4*(i+1))-1:4*i]),
.m_axi_awprot (m_axi_awprot[(3*(i+1))-1:3*i]),
.m_axi_awqos (m_axi_awqos[(4*(i+1))-1:4*i]),
.m_axi_awregion (m_axi_awregion[(4*(i+1))-1:4*i]),
.m_axi_awuser (m_axi_awuser[i]),
.m_axi_awvalid (m_axi_awvalid[i]),
.m_axi_awready (m_axi_awready[i]),
//
// AXI Write data channel.
//
.m_axi_wdata (m_axi_wdata[(64*(i+1))-1:64*i]),
.m_axi_wstrb (m_axi_wstrb[(8*(i+1))-1:8*i]),
.m_axi_wlast (m_axi_wlast[i]),
.m_axi_wuser (m_axi_wuser[i]),
.m_axi_wvalid (m_axi_wvalid[i]),
.m_axi_wready (m_axi_wready[i]),
//
// AXI Write response channel signals
//
.m_axi_bid (m_axi_bid[i]),
.m_axi_bresp (m_axi_bresp[(2*(i+1))-1:2*i]),
.m_axi_buser (m_axi_buser[i]),
.m_axi_bvalid (m_axi_bvalid[i]),
.m_axi_bready (m_axi_bready[i]),
//
// AXI Read address channel
//
.m_axi_arid (m_axi_arid[i]),
.m_axi_araddr (m_axi_araddr[(32*(i+1))-1:32*i]),
.m_axi_arlen (m_axi_arlen[(8*(i+1))-1:8*i]),
.m_axi_arsize (m_axi_arsize[(3*(i+1))-1:3*i]),
.m_axi_arburst (m_axi_arburst[(2*(i+1))-1:2*i]),
.m_axi_arlock (m_axi_arlock[i]),
.m_axi_arcache (m_axi_arcache[(4*(i+1))-1:4*i]),
.m_axi_arprot (m_axi_arprot[(3*(i+1))-1:3*i]),
.m_axi_arqos (m_axi_arqos[(4*(i+1))-1:4*i]),
.m_axi_arregion (m_axi_arregion[(4*(i+1))-1:4*i]),
.m_axi_aruser (m_axi_aruser[i]),
.m_axi_arvalid (m_axi_arvalid[i]),
.m_axi_arready (m_axi_arready[i]),
//
// AXI Read data channel
//
.m_axi_rid (m_axi_rid[i]),
.m_axi_rdata (m_axi_rdata[(64*(i+1))-1:64*i]),
.m_axi_rresp (m_axi_rresp[(2*(i+1))-1:2*i]),
.m_axi_rlast (m_axi_rlast[i]),
.m_axi_ruser (m_axi_ruser[i]),
.m_axi_rvalid (m_axi_rvalid[i]),
.m_axi_rready (m_axi_rready[i]),
//
// CHDR friendly AXI stream input
//
.i_tdata (m_axis_data_tdata),
.i_tlast (m_axis_data_tlast),
.i_tvalid (m_axis_data_tvalid),
.i_tready (m_axis_data_tready),
//
// CHDR friendly AXI Stream output
//
.o_tdata (s_axis_data_tdata),
.o_tlast (s_axis_data_tlast),
.o_tvalid (s_axis_data_tvalid),
.o_tready (s_axis_data_tready),
//
// Settings
//
.set_stb (set_stb[i]),
.set_addr (set_addr[(8*(i+1))-1:8*i]),
.set_data (set_data[(32*(i+1))-1:32*i]),
.rb_data (rb_data[(64*i+32)-1:64*i]),
//
// Debug
//
.debug ()
);
assign rb_data[(64*(i+1))-1:64*i+32] = 32'h0;
end
endgenerate
endmodule
|