File: noc_block_axi_dma_fifo.v

package info (click to toggle)
uhd 3.13.1.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 207,120 kB
  • sloc: cpp: 167,245; ansic: 86,841; vhdl: 53,420; python: 40,839; xml: 13,167; tcl: 5,688; makefile: 2,167; sh: 1,719; pascal: 230; csh: 94; asm: 20; perl: 11
file content (302 lines) | stat: -rwxr-xr-x 16,043 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//

module noc_block_axi_dma_fifo #(
  parameter NOC_ID = 64'hF1F0_D000_0000_0000,
  parameter STR_SINK_FIFOSIZE = 11,             //Input buffering to tolerate DMA (usually DRAM) latency variation
  parameter MTU = 10,                           //Log2 of maximum packet size (in 8-byte words)
  parameter NUM_FIFOS = 1,                      //Number of FIFOs that share the AXI4 memory space (max 4)
  parameter BUS_CLK_RATE = 32'd166666666,       //Frequency in Hz of bus_clk
  parameter [NUM_FIFOS*30-1:0] DEFAULT_FIFO_BASE = {NUM_FIFOS{30'h00000000}}, //Default base addr for each FIFO (configurable via setting reg)
  parameter [NUM_FIFOS*30-1:0] DEFAULT_FIFO_SIZE = {NUM_FIFOS{30'h01FFFFFF}}, //Default size of each FIFO (configurable via setting reg)
  parameter [NUM_FIFOS*12-1:0] DEFAULT_BURST_TIMEOUT = {NUM_FIFOS{12'd256}}, //Timeout (in memory clock cycles) for issuing smaller than optimal bursts
  parameter EXTENDED_DRAM_BIST = 0,             //Prune out additional BIST features for production
  parameter SIMULATION = 0                      //Indicate if this is simulation or synthesis
)(
  //
  // Clocks and Resets
  //
  input bus_clk, input bus_rst,
  input ce_clk, input ce_rst,

  //
  // RFNoC CHDR interface to crossbar
  //
  input  [63:0] i_tdata, input  i_tlast, input  i_tvalid, output i_tready,
  output [63:0] o_tdata, output o_tlast, output o_tvalid, input  o_tready,

  //
  // AXI Memory Mapped Interface
  //
  // -- AXI Write address channel
  output [(NUM_FIFOS*1)-1:0]    m_axi_awid,     // Write address ID. This signal is the identification tag for the write address signals
  output [(NUM_FIFOS*32)-1:0]   m_axi_awaddr,   // Write address. The write address gives the address of the first transfer in a write burst
  output [(NUM_FIFOS*8)-1:0]    m_axi_awlen,    // Burst length. The burst length gives the exact number of transfers in a burst.
  output [(NUM_FIFOS*3)-1:0]    m_axi_awsize,   // Burst size. This signal indicates the size of each transfer in the burst. 
  output [(NUM_FIFOS*2)-1:0]    m_axi_awburst,  // Burst type. The burst type and the size information, determine how the address is calculated
  output [(NUM_FIFOS*1)-1:0]    m_axi_awlock,   // Lock type. Provides additional information about the atomic characteristics of the transfer.
  output [(NUM_FIFOS*4)-1:0]    m_axi_awcache,  // Memory type. This signal indicates how transactions are required to progress
  output [(NUM_FIFOS*3)-1:0]    m_axi_awprot,   // Protection type. This signal indicates the privilege and security level of the transaction
  output [(NUM_FIFOS*4)-1:0]    m_axi_awqos,    // Quality of Service, QoS. The QoS identifier sent for each write transaction
  output [(NUM_FIFOS*4)-1:0]    m_axi_awregion, // Region identifier. Permits a single physical interface on a slave to be re-used.
  output [(NUM_FIFOS*1)-1:0]    m_axi_awuser,   // User signal. Optional User-defined signal in the write address channel.
  output [(NUM_FIFOS*1)-1:0]    m_axi_awvalid,  // Write address valid. This signal indicates that the channel is signaling valid write addr
  input  [(NUM_FIFOS*1)-1:0]    m_axi_awready,  // Write address ready. This signal indicates that the slave is ready to accept an address
  // -- AXI Write data channel.
  output [(NUM_FIFOS*64)-1:0]   m_axi_wdata,    // Write data
  output [(NUM_FIFOS*8)-1:0]    m_axi_wstrb,    // Write strobes. This signal indicates which byte lanes hold valid data.
  output [(NUM_FIFOS*1)-1:0]    m_axi_wlast,    // Write last. This signal indicates the last transfer in a write burst
  output [(NUM_FIFOS*1)-1:0]    m_axi_wuser,    // User signal. Optional User-defined signal in the write data channel.
  output [(NUM_FIFOS*1)-1:0]    m_axi_wvalid,   // Write valid. This signal indicates that valid write data and strobes are available. 
  input  [(NUM_FIFOS*1)-1:0]    m_axi_wready,   // Write ready. This signal indicates that the slave can accept the write data.
  // -- AXI Write response channel signals
  input  [(NUM_FIFOS*1)-1:0]    m_axi_bid,      // Response ID tag. This signal is the ID tag of the write response. 
  input  [(NUM_FIFOS*2)-1:0]    m_axi_bresp,    // Write response. This signal indicates the status of the write transaction.
  input  [(NUM_FIFOS*1)-1:0]    m_axi_buser,    // User signal. Optional User-defined signal in the write response channel.
  input  [(NUM_FIFOS*1)-1:0]    m_axi_bvalid,   // Write response valid. This signal indicates that the channel is signaling a valid response
  output [(NUM_FIFOS*1)-1:0]    m_axi_bready,   // Response ready. This signal indicates that the master can accept a write response
  // -- AXI Read address channel
  output [(NUM_FIFOS*1)-1:0]    m_axi_arid,     // Read address ID. This signal is the identification tag for the read address group of signals
  output [(NUM_FIFOS*32)-1:0]   m_axi_araddr,   // Read address. The read address gives the address of the first transfer in a read burst
  output [(NUM_FIFOS*8)-1:0]    m_axi_arlen,    // Burst length. This signal indicates the exact number of transfers in a burst.
  output [(NUM_FIFOS*3)-1:0]    m_axi_arsize,   // Burst size. This signal indicates the size of each transfer in the burst.
  output [(NUM_FIFOS*2)-1:0]    m_axi_arburst,  // Burst type. The burst type and the size information determine how the address for each transfer
  output [(NUM_FIFOS*1)-1:0]    m_axi_arlock,   // Lock type. This signal provides additional information about the atomic characteristics
  output [(NUM_FIFOS*4)-1:0]    m_axi_arcache,  // Memory type. This signal indicates how transactions are required to progress 
  output [(NUM_FIFOS*3)-1:0]    m_axi_arprot,   // Protection type. This signal indicates the privilege and security level of the transaction
  output [(NUM_FIFOS*4)-1:0]    m_axi_arqos,    // Quality of Service, QoS. QoS identifier sent for each read transaction.
  output [(NUM_FIFOS*4)-1:0]    m_axi_arregion, // Region identifier. Permits a single physical interface on a slave to be re-used
  output [(NUM_FIFOS*1)-1:0]    m_axi_aruser,   // User signal. Optional User-defined signal in the read address channel.
  output [(NUM_FIFOS*1)-1:0]    m_axi_arvalid,  // Read address valid. This signal indicates that the channel is signaling valid read addr
  input  [(NUM_FIFOS*1)-1:0]    m_axi_arready,  // Read address ready. This signal indicates that the slave is ready to accept an address
  // -- AXI Read data channel
  input  [(NUM_FIFOS*1)-1:0]    m_axi_rid,      // Read ID tag. This signal is the identification tag for the read data group of signals
  input  [(NUM_FIFOS*64)-1:0]   m_axi_rdata,    // Read data.
  input  [(NUM_FIFOS*2)-1:0]    m_axi_rresp,    // Read response. This signal indicates the status of the read transfer
  input  [(NUM_FIFOS*1)-1:0]    m_axi_rlast,    // Read last. This signal indicates the last transfer in a read burst.
  input  [(NUM_FIFOS*1)-1:0]    m_axi_ruser,    // User signal. Optional User-defined signal in the read data channel.
  input  [(NUM_FIFOS*1)-1:0]    m_axi_rvalid,   // Read valid. This signal indicates that the channel is signaling the required read data. 
  output [(NUM_FIFOS*1)-1:0]    m_axi_rready,   // Read ready. This signal indicates that the master can accept the read data and response

  output [63:0] debug
);

  ////////////////////////////////////////////////////////////
  //
  // RFNoC Shell
  //
  ////////////////////////////////////////////////////////////
  wire [(NUM_FIFOS*32)-1:0]     set_data;
  wire [(NUM_FIFOS*8)-1:0]      set_addr;
  wire [NUM_FIFOS-1:0]          set_stb;
  wire [(NUM_FIFOS*64)-1:0]     rb_data;

  wire [(NUM_FIFOS*64)-1:0]     str_sink_tdata, str_src_tdata;
  wire [NUM_FIFOS-1:0]          str_sink_tlast, str_sink_tvalid, str_sink_tready, str_src_tlast, str_src_tvalid, str_src_tready;

  wire [NUM_FIFOS-1:0]          clear_tx_seqnum;
  wire [(NUM_FIFOS*16)-1:0]     src_sid, next_dst_sid;

  noc_shell #(
    .NOC_ID(NOC_ID),
    .INPUT_PORTS(NUM_FIFOS),
    .OUTPUT_PORTS(NUM_FIFOS),
    .STR_SINK_FIFOSIZE({NUM_FIFOS{STR_SINK_FIFOSIZE[7:0]}}),
    .USE_TIMED_CMDS(0)) // Settings bus transactions will occur at the vita time specified in the command packet
  noc_shell (
    .bus_clk(bus_clk), .bus_rst(bus_rst),
    .i_tdata(i_tdata), .i_tlast(i_tlast), .i_tvalid(i_tvalid), .i_tready(i_tready),
    .o_tdata(o_tdata), .o_tlast(o_tlast), .o_tvalid(o_tvalid), .o_tready(o_tready),
    // Computer Engine Clock Domain
    .clk(bus_clk), .reset(bus_rst),
    // Control Sink
    .set_data(set_data), .set_addr(set_addr), .set_stb(set_stb), .set_time(/* Unused */),
    .rb_stb({NUM_FIFOS{1'b1}}), .rb_data(rb_data), .rb_addr(),
    // Control Source
    .cmdout_tdata(64'h0), .cmdout_tlast(1'b0), .cmdout_tvalid(1'b0), .cmdout_tready(),
    .ackin_tdata(), .ackin_tlast(), .ackin_tvalid(), .ackin_tready(1'b1),
    // Stream Sink
    .str_sink_tdata(str_sink_tdata), .str_sink_tlast(str_sink_tlast), .str_sink_tvalid(str_sink_tvalid), .str_sink_tready(str_sink_tready),
    // Stream Source
    .str_src_tdata(str_src_tdata), .str_src_tlast(str_src_tlast), .str_src_tvalid(str_src_tvalid), .str_src_tready(str_src_tready),
    // Stream IDs set by host 
    .src_sid(src_sid),                   // SID of this block
    .next_dst_sid(next_dst_sid),         // Next destination SID
    .resp_in_dst_sid(),   // Response destination SID for input stream responses / errors
    .resp_out_dst_sid(), // Response destination SID for output stream responses / errors
    // Misc
    .vita_time(64'd0),
    .clear_tx_seqnum(clear_tx_seqnum),
    .debug(debug));

  // NoC Shell registers 0 - 127,
  // User register address space starts at 128
  localparam SR_USER_REG_BASE = 128;

  genvar i;
  generate
    for (i = 0; i < NUM_FIFOS; i = i + 1) begin:gen_dma_fifos
      ////////////////////////////////////////////////////////////
      //
      // AXI Wrapper
      // Convert RFNoC Shell interface into AXI stream interface
      //
      ////////////////////////////////////////////////////////////
      wire [63:0]  m_axis_data_tdata, s_axis_data_tdata;
      wire         m_axis_data_tlast, s_axis_data_tlast;
      wire         m_axis_data_tvalid, s_axis_data_tvalid;
      wire         m_axis_data_tready, s_axis_data_tready;

      assign m_axis_data_tdata  = str_sink_tdata[(64*(i+1))-1:64*i];
      assign m_axis_data_tlast  = str_sink_tlast[i];
      assign m_axis_data_tvalid = str_sink_tvalid[i];
      assign str_sink_tready[i] = m_axis_data_tready;

      reg         first_line;
      reg  [11:0] seqnum;
      wire [63:0] modified_header;
      always @(posedge bus_clk) begin
        if (bus_rst | clear_tx_seqnum[i]) begin
          first_line <= 1'b1;
          seqnum     <= 12'd0;
        end else begin
          if (s_axis_data_tvalid & s_axis_data_tready) begin
            if (s_axis_data_tlast) begin
              first_line <= 1'b1;
              seqnum     <= seqnum + 1;
            end else begin
              first_line <= 1'b0;
            end
          end
        end
      end

      wire [63:0] unused;
      cvita_hdr_modify cvita_hdr_modify (
        .header_in({s_axis_data_tdata,64'd0}),
        .header_out({modified_header,unused}),
        .use_pkt_type(1'b0),       .pkt_type(),
        .use_has_time(1'b0),       .has_time(),
        .use_eob(1'b0),            .eob(),
        .use_seqnum(1'b1),         .seqnum(seqnum),
        .use_length(1'b0),         .length(),
        .use_payload_length(1'b0), .payload_length(),
        .use_src_sid(1'b1),        .src_sid(src_sid[(16*(i+1))-1:16*i]),
        .use_dst_sid(1'b1),        .dst_sid(next_dst_sid[(16*(i+1))-1:16*i]),
        .use_vita_time(1'b0),      .vita_time());

      assign str_src_tdata[(64*(i+1))-1:64*i] = first_line ? modified_header : s_axis_data_tdata;
      assign str_src_tlast[i] = s_axis_data_tlast;
      assign str_src_tvalid[i] = s_axis_data_tvalid;
      assign s_axis_data_tready = str_src_tready[i];

      axi_dma_fifo #(
        .SIMULATION(SIMULATION),
        .DEFAULT_BASE(DEFAULT_FIFO_BASE[(30*(i+1))-1:30*i]),
        .DEFAULT_MASK(~(DEFAULT_FIFO_SIZE[(30*(i+1))-1:30*i])),
        .DEFAULT_TIMEOUT(DEFAULT_BURST_TIMEOUT[(12*(i+1))-1:12*i]),
        .BUS_CLK_RATE(BUS_CLK_RATE),
        .SR_BASE(SR_USER_REG_BASE),
        .EXT_BIST(EXTENDED_DRAM_BIST),
        .MAX_PKT_LEN(MTU))
      axi_dma_fifo_i (
        //
        // Clocks and reset
        //
        .bus_clk(bus_clk), .bus_reset(bus_rst),
        .dram_clk(ce_clk), .dram_reset(ce_rst),
        //
        // AXI Write address channel
        //
        .m_axi_awid     (m_axi_awid[i]),
        .m_axi_awaddr   (m_axi_awaddr[(32*(i+1))-1:32*i]),
        .m_axi_awlen    (m_axi_awlen[(8*(i+1))-1:8*i]),
        .m_axi_awsize   (m_axi_awsize[(3*(i+1))-1:3*i]),
        .m_axi_awburst  (m_axi_awburst[(2*(i+1))-1:2*i]),
        .m_axi_awlock   (m_axi_awlock[i]),
        .m_axi_awcache  (m_axi_awcache[(4*(i+1))-1:4*i]),
        .m_axi_awprot   (m_axi_awprot[(3*(i+1))-1:3*i]),
        .m_axi_awqos    (m_axi_awqos[(4*(i+1))-1:4*i]),
        .m_axi_awregion (m_axi_awregion[(4*(i+1))-1:4*i]),
        .m_axi_awuser   (m_axi_awuser[i]),
        .m_axi_awvalid  (m_axi_awvalid[i]),
        .m_axi_awready  (m_axi_awready[i]),
        //
        // AXI Write data channel.
        //
        .m_axi_wdata    (m_axi_wdata[(64*(i+1))-1:64*i]),
        .m_axi_wstrb    (m_axi_wstrb[(8*(i+1))-1:8*i]),
        .m_axi_wlast    (m_axi_wlast[i]),
        .m_axi_wuser    (m_axi_wuser[i]),
        .m_axi_wvalid   (m_axi_wvalid[i]),
        .m_axi_wready   (m_axi_wready[i]),
        //
        // AXI Write response channel signals
        //
        .m_axi_bid      (m_axi_bid[i]),
        .m_axi_bresp    (m_axi_bresp[(2*(i+1))-1:2*i]),
        .m_axi_buser    (m_axi_buser[i]),
        .m_axi_bvalid   (m_axi_bvalid[i]),
        .m_axi_bready   (m_axi_bready[i]),
        //
        // AXI Read address channel
        //
        .m_axi_arid     (m_axi_arid[i]),
        .m_axi_araddr   (m_axi_araddr[(32*(i+1))-1:32*i]),
        .m_axi_arlen    (m_axi_arlen[(8*(i+1))-1:8*i]),
        .m_axi_arsize   (m_axi_arsize[(3*(i+1))-1:3*i]),
        .m_axi_arburst  (m_axi_arburst[(2*(i+1))-1:2*i]),
        .m_axi_arlock   (m_axi_arlock[i]),
        .m_axi_arcache  (m_axi_arcache[(4*(i+1))-1:4*i]),
        .m_axi_arprot   (m_axi_arprot[(3*(i+1))-1:3*i]),
        .m_axi_arqos    (m_axi_arqos[(4*(i+1))-1:4*i]),
        .m_axi_arregion (m_axi_arregion[(4*(i+1))-1:4*i]),
        .m_axi_aruser   (m_axi_aruser[i]),
        .m_axi_arvalid  (m_axi_arvalid[i]),
        .m_axi_arready  (m_axi_arready[i]),
        //
        // AXI Read data channel
        //
        .m_axi_rid      (m_axi_rid[i]),
        .m_axi_rdata    (m_axi_rdata[(64*(i+1))-1:64*i]),
        .m_axi_rresp    (m_axi_rresp[(2*(i+1))-1:2*i]),
        .m_axi_rlast    (m_axi_rlast[i]),
        .m_axi_ruser    (m_axi_ruser[i]),
        .m_axi_rvalid   (m_axi_rvalid[i]),
        .m_axi_rready   (m_axi_rready[i]),
        //
        // CHDR friendly AXI stream input
        //
        .i_tdata        (m_axis_data_tdata),
        .i_tlast        (m_axis_data_tlast),
        .i_tvalid       (m_axis_data_tvalid),
        .i_tready       (m_axis_data_tready),
        //
        // CHDR friendly AXI Stream output
        //
        .o_tdata        (s_axis_data_tdata),
        .o_tlast        (s_axis_data_tlast),
        .o_tvalid       (s_axis_data_tvalid),
        .o_tready       (s_axis_data_tready),
        //
        // Settings
        //
        .set_stb        (set_stb[i]),
        .set_addr       (set_addr[(8*(i+1))-1:8*i]),
        .set_data       (set_data[(32*(i+1))-1:32*i]),
        .rb_data        (rb_data[(64*i+32)-1:64*i]),
        //
        // Debug
        //
        .debug          ()
      );
      assign rb_data[(64*(i+1))-1:64*i+32] = 32'h0;

    end
  endgenerate

endmodule