1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
//
// Copyright 2015 Ettus Research
//
module ofdm_constellation_demapper #(
parameter NUM_SUBCARRIERS = 64,
// Bit mask of subcarriers to exclude, such as guard bands, pilot subcarriers, DC bin, etc., Neg freq -> Pos freq
parameter EXCLUDE_SUBCARRIERS = 64'b1111_1100_0001_0000_0000_0000_0100_0000_1000_0001_0000_0000_0000_0100_0001_1111,
parameter MAX_MODULATION_ORDER = 6, // Must be a power of 4, default QAM-64
parameter BYTE_REVERSE = 0, // Reverse output bytes
parameter SR_MODULATION_ORDER = 0, // 1 = BPSK, 2 = QPSK, 4 = QAM16, 6 = QAM64
parameter SR_SCALING = 1, // Normalization factor (i.e. QAM64 = sqrt(42)) in Q2.14 format
parameter SR_OUTPUT_SYMBOLS = 2) // Bypass symbol to gray code module and output symbols. Useful for viewing constellation.
(
input clk, input reset, input clear,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input [31:0] i_tdata, input i_tlast, input i_tvalid, output i_tready,
output [31:0] o_tdata, output o_tlast, output o_tvalid, input o_tready
);
localparam BPSK_MOD = 1;
localparam QPSK_MOD = 2;
localparam QAM16_MOD = 4;
localparam QAM64_MOD = 6;
// Settings Registers
wire [$clog2(MAX_MODULATION_ORDER):0] modulation_order;
setting_reg #(
.my_addr(SR_MODULATION_ORDER), .width($clog2(MAX_MODULATION_ORDER)+1), .at_reset(QPSK_MOD))
setting_reg_modulation_order (
.clk(clk), .rst(reset),
.strobe(set_stb), .addr(set_addr), .in(set_data), .out(modulation_order), .changed());
wire [15:0] scaling_tdata;
wire scaling_tvalid, scaling_tready, scaling_tlast;
axi_setting_reg #(
.ADDR(SR_SCALING), .WIDTH(16), .REPEATS(1), .DATA_AT_RESET(23170)) // DATA_AT_RESET is QPSK scaling = $floor((2**14)*$sqrt(2))
axi_setting_reg_scaling (
.clk(clk), .reset(reset),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.o_tdata(scaling_tdata), .o_tlast(scaling_tlast), .o_tvalid(scaling_tvalid), .o_tready(scaling_tready));
wire output_symbols;
setting_reg #(
.my_addr(SR_OUTPUT_SYMBOLS), .width(1), .at_reset(0))
setting_reg_output_symbols (
.clk(clk), .rst(reset),
.strobe(set_stb), .addr(set_addr), .in(set_data), .out(output_symbols), .changed());
// Remove unused subcarriers (such as guard bands / pilot tones)
wire [31:0] punctured_tdata;
wire punctured_tlast, punctured_tvalid, punctured_tready;
puncture #(
.WIDTH(32),
.MAX_LEN(NUM_SUBCARRIERS),
.DEFAULT_VECTOR_LEN(NUM_SUBCARRIERS),
.DEFAULT_PUNCTURE_VECTOR(~EXCLUDE_SUBCARRIERS))
puncture (
.clk(clk), .reset(reset), .clear(clear),
.vector_len_tdata(), .vector_len_tvalid(1'b0), .vector_len_tready(),
.puncture_vector_tdata(), .puncture_vector_tvalid(1'b0), .puncture_vector_tready(),
.i_tdata(i_tdata), .i_tlast(i_tlast), .i_tvalid(i_tvalid), .i_tready(i_tready),
.o_tdata(punctured_tdata), .o_tlast(punctured_tlast), .o_tvalid(punctured_tvalid), .o_tready(punctured_tready));
// Scaling
// Based on 802.11, format Q3.12 (1 sign bit, 3 integer, 12 fractional), +0.5 for rounding
wire [63:0] scaled_tdata;
wire scaled_tlast, scaled_tvalid, scaled_tready;
mult #(.WIDTH_A(16), .WIDTH_B(16), .WIDTH_P(32), .DROP_TOP_P(1), .LATENCY(3))
mult_i (
.clk(clk), .reset(reset),
.a_tdata(scaling_tdata), .a_tlast(scaling_tlast), .a_tvalid(scaling_tvalid), .a_tready(scaling_tready),
.b_tdata(punctured_tdata[31:16]), .b_tlast(punctured_tlast), .b_tvalid(punctured_tvalid), .b_tready(punctured_tready),
.p_tdata(scaled_tdata[63:32]), .p_tlast(scaled_tlast), .p_tvalid(scaled_tvalid), .p_tready(scaled_tready));
mult #(.WIDTH_A(16), .WIDTH_B(16), .WIDTH_P(32), .DROP_TOP_P(1), .LATENCY(3))
mult_q (
.clk(clk), .reset(reset),
.a_tdata(scaling_tdata), .a_tlast(scaling_tlast), .a_tvalid(scaling_tvalid), .a_tready(),
.b_tdata(punctured_tdata[15:0]), .b_tlast(punctured_tlast), .b_tvalid(punctured_tvalid), .b_tready(),
.p_tdata(scaled_tdata[31:0]), .p_tlast(), .p_tvalid(), .p_tready(scaled_tready));
// Round back to sc16
wire [31:0] rounded_tdata;
wire rounded_tlast, rounded_tvalid, rounded_tready;
axi_round_and_clip_complex #(
.WIDTH_IN(32),
.WIDTH_OUT(16),
.CLIP_BITS(6))
axi_round_complex (
.clk(clk), .reset(reset),
.i_tdata(scaled_tdata), .i_tlast(scaled_tlast), .i_tvalid(scaled_tvalid), .i_tready(scaled_tready),
.o_tdata(rounded_tdata), .o_tlast(rounded_tlast), .o_tvalid(rounded_tvalid), .o_tready(rounded_tready));
// Demap QAM symbols to gray coded bits
wire [MAX_MODULATION_ORDER-1:0] bits_tdata;
wire bits_tlast, bits_tvalid, bits_tready, rounded_int_tready;
symbol_to_gray_bits #(
.WIDTH_IN(16),
.MODULATION_ORDER(MAX_MODULATION_ORDER))
symbol_to_gray_bits (
.clk(clk), .reset(reset), .clear(clear),
.i_tdata(rounded_tdata), .i_tlast(rounded_tlast), .i_tvalid(rounded_tvalid), .i_tready(rounded_int_tready),
.o_tdata(bits_tdata), .o_tlast(bits_tlast), .o_tvalid(bits_tvalid), .o_tready(bits_tready));
// Pack bits into words based on modulation order
reg [35:0] packed_bits;
reg [31:0] packed_bits_tdata;
reg packed_bits_tvalid;
reg [7:0] bit_cnt;
reg [3:0] qam64_bit_sel;
always @(posedge clk) begin
if (reset | clear) begin
bit_cnt <= 'd0;
packed_bits_tdata <= 'd0;
packed_bits_tvalid <= 1'b0;
qam64_bit_sel <= 0;
end else begin
if (bits_tvalid & bits_tready) begin
packed_bits_tvalid <= 1'b0;
case (modulation_order)
// BPSK
BPSK_MOD : begin
packed_bits[0] <= bits_tdata[MAX_MODULATION_ORDER/2-1];
packed_bits[31:1] <= packed_bits[30:0];
if (bit_cnt > 31) begin
bit_cnt <= 'd1;
packed_bits_tvalid <= 1'b1;
packed_bits_tdata <= packed_bits[31:0];
end else begin
bit_cnt <= bit_cnt + 1;
end
end
// QPSK
QPSK_MOD : begin
packed_bits[1:0] <= {bits_tdata[MAX_MODULATION_ORDER-1],bits_tdata[MAX_MODULATION_ORDER/2-1]};
packed_bits[31:2] <= packed_bits[29:0];
if (bit_cnt > 31) begin
bit_cnt <= 'd2;
packed_bits_tvalid <= 1'b1;
packed_bits_tdata <= packed_bits[31:0];
end else begin
bit_cnt <= bit_cnt + 2;
end
end
// QAM 16
QAM16_MOD : begin
packed_bits[3:0] <= {bits_tdata[MAX_MODULATION_ORDER-1:MAX_MODULATION_ORDER-2],bits_tdata[MAX_MODULATION_ORDER/2-1:MAX_MODULATION_ORDER/2-2]};
packed_bits[31:4] <= packed_bits[27:0];
if (bit_cnt > 31) begin
bit_cnt <= 'd4;
packed_bits_tvalid <= 1'b1;
packed_bits_tdata <= packed_bits[31:0];
end else begin
bit_cnt <= bit_cnt + 4;
end
end
// QAM 64
QAM64_MOD : begin
packed_bits[5:0] <= bits_tdata[MAX_MODULATION_ORDER-1:MAX_MODULATION_ORDER-6];
packed_bits[35:6] <= packed_bits[29:0];
if (bit_cnt > 31) begin
bit_cnt <= bit_cnt - 32 + 6;
packed_bits_tvalid <= 1'b1;
case (qam64_bit_sel)
0 : begin
packed_bits_tdata <= packed_bits[35:4];
qam64_bit_sel <= 1;
end
1 : begin
packed_bits_tdata <= packed_bits[33:2];
qam64_bit_sel <= 2;
end
2 : begin
packed_bits_tdata <= packed_bits[31:0];
qam64_bit_sel <= 0;
end
endcase
end else begin
bit_cnt <= bit_cnt + 6;
end
end
// Anything else always output the raw data
default : begin
packed_bits_tdata <= bits_tdata;
packed_bits_tvalid <= 1'b1;
end
endcase
end
end
end
// Reverse bytes (optional)
wire [31:0] packed_bits_reverse_tdata;
genvar i,j;
generate
if (BYTE_REVERSE) begin
for (j = 0; j < 4; j = j + 1) begin
for (i = 0; i < 8; i = i + 1) begin
assign packed_bits_reverse_tdata[(j+1)*8-i-1] = packed_bits_tdata[j*8+i];
end
end
end else begin
assign packed_bits_reverse_tdata = packed_bits_tdata;
end
endgenerate
// Mux to output packed bits or symbols. Bypassing symbol to gray code module is useful for viewing constellation.
wire [31:0] output_reg_tdata;
wire output_reg_tvalid, output_reg_tready;
assign output_reg_tdata = output_symbols ? rounded_tdata : packed_bits_reverse_tdata;
assign output_reg_tvalid = output_symbols ? rounded_tvalid : packed_bits_tvalid;
assign rounded_tready = output_symbols ? output_reg_tready : rounded_int_tready;
assign bits_tready = output_reg_tready;
axi_fifo_flop #(.WIDTH(33)) axi_fifo_flop_output (
.clk(clk), .reset(reset), .clear(clear),
.i_tdata({1'b0,output_reg_tdata}), .i_tvalid(output_reg_tvalid), .i_tready(output_reg_tready),
.o_tdata({o_tlast,o_tdata}), .o_tvalid(o_tvalid), .o_tready(o_tready),
.space(), .occupied());
endmodule
|