1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
//
// Copyright 2015 National Instruments
//
module one_tap_equalizer (
input clk_i,
input rst_i,
input sof_i,
input [31:0] i_tdata,
input i_tlast,
input i_tvalid,
output i_tready,
output [31:0] o_tdata,
output o_tlast,
output o_tvalid,
input o_tready);
//----------------------------------------------------------------------------
// Constants
//----------------------------------------------------------------------------
localparam STATE_PREAMBLE = 2'd0;
localparam STATE_ESTIMATE = 2'd1;
localparam STATE_EQUALIZE = 2'd2;
//----------------------------------------------------------------------------
// Registers
//----------------------------------------------------------------------------
reg last_sof = 1'b0;
reg [1:0] state = STATE_PREAMBLE;
reg [5:0] prembl_count = 6'd0;
reg signed [1:0] long_preamble[63:0];
//----------------------------------------------------------------------------
// Wires
//----------------------------------------------------------------------------
// Determine start of frame
wire sof;
// Extract preamble
wire [31:0] prembl_tdata;
wire prembl_tlast, prembl_tvalid, prembl_tready;
wire first_prembl_tvalid;
// Apply stored preamble
wire [31:0] neg_prembl_tdata;
wire [31:0] applied_prembl_tdata;
// Buffer preamble
wire [31:0] prembl_flop_tdata;
wire prembl_flop_tlast, prembl_flop_tvalid, prembl_flop_tready;
// Invert preamble
wire [31:0] inv_tdata;
wire inv_tlast, inv_tvalid, inv_tready;
// Buffer equalization factor
wire [31:0] eq_tdata;
wire eq_tlast, eq_tvalid, eq_tready;
wire [31:0] eq_fifo_tdata;
wire eq_fifo_tlast, eq_fifo_tvalid, eq_fifo_tready;
wire eq_mul_tready, eq_mul_tvalid;
// Extract data
wire [31:0] data_tdata;
wire data_tlast, data_tvalid, data_tready;
wire skip_prembl_tvalid;
// Buffer incoming data
wire [31:0] data_fifo_tdata;
wire data_fifo_tlast, data_fifo_tvalid, data_fifo_tready;
// Multiplied result
wire [63:0] mul_tdata;
wire mul_tlast, mul_tvalid, mul_tready;
//----------------------------------------------------------------------------
// Instantiations
//----------------------------------------------------------------------------
// Split incoming stream in preamble and data
split_stream #(
.WIDTH(64),
.ACTIVE_MASK(4'b0011))
split_stream_inst (
.clk(clk_i),
.reset(rst_i | sof),
.clear(sof),
// Incoming data
.i_tdata(i_tdata),
.i_tlast(i_tlast),
.i_tvalid(i_tvalid),
.i_tready(i_tready),
// Port 0
.o0_tdata(prembl_tdata),
.o0_tlast(prembl_tlast),
.o0_tvalid(prembl_tvalid),
.o0_tready(prembl_tready),
// Port 1
.o1_tdata(data_tdata),
.o1_tlast(data_tlast),
.o1_tvalid(data_tvalid),
.o1_tready(data_tready),
// Port 2
.o2_tdata(),
.o2_tlast(),
.o2_tvalid(),
.o2_tready(1'b1),
// Port 3
.o3_tdata(),
.o3_tlast(),
.o3_tvalid(),
.o3_tready(1'b1));
// Buffer incoming data
axi_fifo #(
.WIDTH(33),
.SIZE(8))
axi_data_fifo_inst (
.clk(clk_i),
.reset(rst_i | sof),
.clear(sof),
.i_tdata({data_tlast, data_tdata}),
.i_tvalid(skip_prembl_tvalid),
.i_tready(data_tready),
.o_tdata({data_fifo_tlast, data_fifo_tdata}),
.o_tvalid(data_fifo_tvalid),
.o_tready(data_fifo_tready),
.space(),
.occupied());
// Buffer applied preamble
axi_fifo_flop #(
.WIDTH(33))
axi_prembl_flop (
.clk(clk_i),
.reset(rst_i | sof),
.clear(sof),
.i_tdata({prembl_tlast, applied_prembl_tdata}),
.i_tvalid(first_prembl_tvalid),
.i_tready(prembl_tready),
.o_tdata({prembl_flop_tlast, prembl_flop_tdata}),
.o_tvalid(prembl_flop_tvalid),
.o_tready(prembl_flop_tready),
.space(),
.occupied());
// Invert incoming preamble
complex_invert complex_invert_inst (
.clk(clk_i),
.reset(rst_i | sof),
.clear(sof),
.i_tdata(prembl_flop_tdata),
.i_tlast(prembl_flop_tlast),
.i_tvalid(prembl_flop_tvalid),
.i_tready(prembl_flop_tready),
.o_tdata(inv_tdata),
.o_tlast(inv_tlast),
.o_tvalid(inv_tvalid),
.o_tready(inv_tready));
// Buffer equalization factor
axi_fifo #(
.WIDTH(33),
.SIZE(6))
axi_eq_fifo_inst (
.clk(clk_i),
.reset(rst_i | sof),
.clear(sof),
.i_tdata({eq_tlast, eq_tdata}),
.i_tvalid(eq_tvalid),
.i_tready(eq_tready),
.o_tdata({eq_fifo_tlast, eq_fifo_tdata}),
.o_tvalid(eq_fifo_tvalid),
.o_tready(eq_fifo_tready),
.space(),
.occupied());
// Multiply data with equalization factor
cmul cmul_inst (
.clk(clk_i),
.reset(rst_i | sof_i), // Multiplier needs reset to be at least 2 cycles
.a_tdata(eq_fifo_tdata),
.a_tlast(eq_fifo_tlast),
.a_tvalid(eq_mul_tvalid),
.a_tready(eq_mul_tready),
.b_tdata(data_fifo_tdata),
.b_tlast(data_fifo_tlast),
.b_tvalid(data_fifo_tvalid),
.b_tready(data_fifo_tready),
.o_tdata(mul_tdata),
.o_tlast(mul_tlast),
.o_tvalid(mul_tvalid),
.o_tready(mul_tready));
// Round an clip output
axi_round_and_clip_complex #(
.WIDTH_IN(32),
.WIDTH_OUT(16),
.CLIP_BITS(6), // Calibrated value
.FIFOSIZE(0))
axi_round_and_clip_complex_inst (
.clk(clk_i),
.reset(rst_i | sof),
.i_tdata(mul_tdata),
.i_tlast(mul_tlast),
.i_tvalid(mul_tvalid),
.i_tready(mul_tready),
.o_tdata(o_tdata),
.o_tlast(o_tlast),
.o_tvalid(o_tvalid),
.o_tready(o_tready));
//----------------------------------------------------------------------------
// Sequential Logic
//----------------------------------------------------------------------------
always @(posedge clk_i) begin
if(rst_i) begin
state <= STATE_PREAMBLE;
last_sof <= 1'b0;
prembl_count <= 6'd0;
end
else begin
last_sof <= sof_i;
if(sof)
prembl_count <= 6'd0;
else if(prembl_tvalid && prembl_tready)
prembl_count <= prembl_count + 1;
case(state)
STATE_PREAMBLE:
if(prembl_tlast)
state <= STATE_ESTIMATE;
STATE_ESTIMATE:
if(inv_tlast)
state <= STATE_EQUALIZE;
STATE_EQUALIZE:
if(sof)
state <= STATE_PREAMBLE;
endcase
end
end
//----------------------------------------------------------------------------
// Combinational Logic
//----------------------------------------------------------------------------
// Start of frame edge detection
assign sof = ~last_sof & sof_i;
// Invert I part
assign neg_prembl_tdata[31:16] = (prembl_tdata[31:16] == -16'sd32768) ?
16'sd32767 : (~prembl_tdata[31:16] + 1'b1);
// Invert Q part
assign neg_prembl_tdata[15:0] = (prembl_tdata[15:0] == -16'sd32768) ?
16'sd32767 : (~prembl_tdata[15:0] + 1'b1);
// Apply stored preamble:
// 0 -> 0 + 0j
// 1 -> a + bj
// -1 -> -a - bj
assign applied_prembl_tdata = (long_preamble[prembl_count] == 2'sd0) ?
32'sd0 : ((long_preamble[prembl_count] == -2'sd1) ?
neg_prembl_tdata : prembl_tdata);
// Only process preamble once
assign first_prembl_tvalid = (state == STATE_PREAMBLE) ? prembl_tvalid : 1'b0;
// Skip preamble for data FIFO
assign skip_prembl_tvalid = data_tvalid & (~first_prembl_tvalid);
// Preamble FIFO feedback
assign eq_tdata = (state == STATE_ESTIMATE) ? inv_tdata : eq_fifo_tdata;
assign eq_tlast = (state == STATE_ESTIMATE) ? inv_tlast : eq_fifo_tlast;
assign eq_tvalid = (state == STATE_ESTIMATE) ? inv_tvalid : (eq_fifo_tvalid & eq_fifo_tready);
assign inv_tready = (state == STATE_ESTIMATE) ? eq_tready : 1'b0;
assign eq_fifo_tready = (state == STATE_EQUALIZE) ?
(eq_mul_tready & eq_tready) : 1'b0;
assign eq_mul_tvalid = (state == STATE_EQUALIZE) ? eq_fifo_tvalid : 1'b0;
// Long preamble from IEEE 802.11
initial begin
long_preamble[0] = 2'sd0;
long_preamble[1] = 2'sd0;
long_preamble[2] = 2'sd0;
long_preamble[3] = 2'sd0;
long_preamble[4] = 2'sd0;
long_preamble[5] = 2'sd0;
long_preamble[6] = 2'sd1;
long_preamble[7] = 2'sd1;
long_preamble[8] = -2'sd1;
long_preamble[9] = -2'sd1;
long_preamble[10] = 2'sd1;
long_preamble[11] = 2'sd1;
long_preamble[12] = -2'sd1;
long_preamble[13] = 2'sd1;
long_preamble[14] = -2'sd1;
long_preamble[15] = 2'sd1;
long_preamble[16] = 2'sd1;
long_preamble[17] = 2'sd1;
long_preamble[18] = 2'sd1;
long_preamble[19] = 2'sd1;
long_preamble[20] = 2'sd1;
long_preamble[21] = -2'sd1;
long_preamble[22] = -2'sd1;
long_preamble[23] = 2'sd1;
long_preamble[24] = 2'sd1;
long_preamble[25] = -2'sd1;
long_preamble[26] = 2'sd1;
long_preamble[27] = -2'sd1;
long_preamble[28] = 2'sd1;
long_preamble[29] = 2'sd1;
long_preamble[30] = 2'sd1;
long_preamble[31] = 2'sd1;
long_preamble[32] = 2'sd0;
long_preamble[33] = 2'sd1;
long_preamble[34] = -2'sd1;
long_preamble[35] = -2'sd1;
long_preamble[36] = 2'sd1;
long_preamble[37] = 2'sd1;
long_preamble[38] = -2'sd1;
long_preamble[39] = 2'sd1;
long_preamble[40] = -2'sd1;
long_preamble[41] = 2'sd1;
long_preamble[42] = -2'sd1;
long_preamble[43] = -2'sd1;
long_preamble[44] = -2'sd1;
long_preamble[45] = -2'sd1;
long_preamble[46] = -2'sd1;
long_preamble[47] = 2'sd1;
long_preamble[48] = 2'sd1;
long_preamble[49] = -2'sd1;
long_preamble[50] = -2'sd1;
long_preamble[51] = 2'sd1;
long_preamble[52] = -2'sd1;
long_preamble[53] = 2'sd1;
long_preamble[54] = -2'sd1;
long_preamble[55] = 2'sd1;
long_preamble[56] = 2'sd1;
long_preamble[57] = 2'sd1;
long_preamble[58] = 2'sd1;
long_preamble[59] = 2'sd0;
long_preamble[60] = 2'sd0;
long_preamble[61] = 2'sd0;
long_preamble[62] = 2'sd0;
long_preamble[63] = 2'sd0;
end
endmodule
|