1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
//
// Copyright 2018 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: vector_iir
// Description:
// This module implements an IIR filter with a variable length delay line.
// Transfer Function: beta
// H(z) = ------------------
// 1 - alpha*z^-delay
// where:
// - beta is the feedforward tap
// - alpha is the feedback tap
// - delay (aka vector_len) is the feedback tap delay
//
// Parameters:
// - MAX_VECTOR_LEN: Maximum value for delay (vector_len)
// - IN_W: Input sample width for a real sample which includes the sign bit.
// The actual input of the module will be 2*IN_W because it handles
// complex data.
// - OUT_W: Output sample width for a real sample which includes the sign bit.
// The actual output of the module will be 2*OUT_W because it handles
// complex data.
// - ALPHA_W: Width of the alpha parameter (signed)
// - BETA_W: Width of the beta parameter (signed)
// - FEEDBACK_W: Number of bits in the feedback delay line (optimal = 25)
// - ACCUM_HEADROOM: Number of bits of headroom in the feedback accumulator
// Signals:
// - i_* : Input sample stream (AXI-Stream)
// - o_* : Output sample stream (AXI-Stream)
// - set_*: Static settings
//
module vector_iir #(
parameter MAX_VECTOR_LEN = 1024,
parameter IN_W = 16,
parameter OUT_W = 16,
parameter ALPHA_W = 16,
parameter BETA_W = 16,
parameter FEEDBACK_W = 25,
parameter ACCUM_HEADROOM = 4
)(
input wire clk,
input wire reset,
input wire [$clog2(MAX_VECTOR_LEN)-1:0] set_vector_len,
input wire [BETA_W-1:0] set_beta,
input wire [ALPHA_W-1:0] set_alpha,
input wire [IN_W*2-1:0] i_tdata,
input wire i_tlast,
input wire i_tvalid,
output wire i_tready,
output wire [OUT_W*2-1:0] o_tdata,
output wire o_tlast,
output wire o_tvalid,
input wire o_tready
);
// There are four registers between the input and output
// - Input pipeline (in_X_reg)
// - Feedforward product (ff_prod_X_reg)
// - Feedback sum (fb_sum_X_reg)
// - Output pipeline (dsp_data_out)
localparam IN_TO_OUT_LATENCY = 4;
// The feedback path has 3 cycles of delay
// - Feedback sum (fb_sum_X_reg)
// - variable_delay_line (2 cyc)
// - Scaled feedback (fb_sum_scaled_X_reg)
localparam MIN_FB_DELAY = 4;
// Pipeline settings for timing
reg [$clog2(MAX_VECTOR_LEN)-1:0] reg_fb_delay;
reg signed [BETA_W-1:0] reg_beta;
reg signed [ALPHA_W-1:0] reg_alpha;
always @(posedge clk) begin
reg_fb_delay <= set_vector_len - MIN_FB_DELAY - 1; //Adjust for pipeline delay
reg_beta <= set_beta;
reg_alpha <= set_alpha;
end
//-----------------------------------------------------------
// AXI-Stream wrapper
//-----------------------------------------------------------
wire [(IN_W*2)-1:0] dsp_data_in;
reg [(OUT_W*2)-1:0] dsp_data_out = 0;
wire [IN_TO_OUT_LATENCY-1:0] chain_en;
// We are implementing an N-cycle DSP operation without AXI-Stream handshaking.
// Use an axis_shift_register and the associated strobes to drive clock enables
// on the DSP regs to ensure that data/valid/last sync up.
axis_shift_register #(
.WIDTH(IN_W*2), .NSPC(1), .LATENCY(IN_TO_OUT_LATENCY),
.SIDEBAND_DATAPATH(1), .PIPELINE("NONE")
) axis_shreg_i (
.clk(clk), .reset(reset),
.s_axis_tdata(i_tdata), .s_axis_tkeep(1'b1), .s_axis_tlast(i_tlast),
.s_axis_tvalid(i_tvalid), .s_axis_tready(i_tready),
.m_axis_tdata(o_tdata), .m_axis_tkeep(), .m_axis_tlast(o_tlast),
.m_axis_tvalid(o_tvalid), .m_axis_tready(o_tready),
.stage_stb(chain_en), .stage_eop(),
.m_sideband_data(dsp_data_in), .m_sideband_keep(),
.s_sideband_data(dsp_data_out)
);
//-----------------------------------------------------------
// DSP datapath
//-----------------------------------------------------------
localparam FF_PROD_W = IN_W + BETA_W - 1;
localparam FB_PROD_W = FEEDBACK_W + ALPHA_W - 1;
reg signed [IN_W-1:0] in_i_reg = 0, in_q_reg = 0;
reg signed [FF_PROD_W-1:0] ff_prod_i_reg = 0, ff_prod_q_reg = 0;
reg signed [FB_PROD_W-1:0] fb_sum_i_reg = 0, fb_sum_q_reg = 0;
wire signed [FB_PROD_W-1:0] fb_trunc_i, fb_trunc_q;
wire signed [FEEDBACK_W-1:0] fb_sum_del_i, fb_sum_del_q;
reg signed [FB_PROD_W-1:0] fb_sum_scaled_i_reg = 0, fb_sum_scaled_q_reg = 0;
wire signed [OUT_W-1:0] out_i_rnd, out_q_rnd;
always @(posedge clk) begin
if (reset) begin
{in_i_reg, in_q_reg} <= 0;
ff_prod_i_reg <= 0;
ff_prod_q_reg <= 0;
fb_sum_i_reg <= 0;
fb_sum_q_reg <= 0;
fb_sum_scaled_i_reg <= 0;
fb_sum_scaled_q_reg <= 0;
dsp_data_out <= 0;
end else begin
if (chain_en[0]) begin
// Input pipeline register
{in_i_reg, in_q_reg} <= dsp_data_in;
end
if (chain_en[1]) begin
// Feedforward product (x[n] * beta)
ff_prod_i_reg <= in_i_reg * reg_beta;
ff_prod_q_reg <= in_q_reg * reg_beta;
// Compute scaled, delayed feedback (y[n-D] * alpha)
fb_sum_scaled_i_reg <= fb_sum_del_i * reg_alpha;
fb_sum_scaled_q_reg <= fb_sum_del_q * reg_alpha;
end
if (chain_en[2]) begin
// Sum of feedforward product and scaled, delayed feedback
// y[n] = (alpha * y[n-D]) + (x[n] * beta)
fb_sum_i_reg <= fb_sum_scaled_i_reg + (ff_prod_i_reg <<< (FB_PROD_W - FF_PROD_W - ACCUM_HEADROOM));
fb_sum_q_reg <= fb_sum_scaled_q_reg + (ff_prod_q_reg <<< (FB_PROD_W - FF_PROD_W - ACCUM_HEADROOM));
end
if (chain_en[3]) begin
// Output pipeline register
dsp_data_out <= {out_i_rnd, out_q_rnd};
end
end
end
// Truncate feedback to the requested FEEDBACK_W
assign fb_trunc_i = (fb_sum_i_reg >>> (FB_PROD_W - FEEDBACK_W));
assign fb_trunc_q = (fb_sum_q_reg >>> (FB_PROD_W - FEEDBACK_W));
// A variable delay line will be used to store the feedback
// This delay line stores "reg_fb_delay" worth of samples which
// allows each element in the vector to have it's own independent state
variable_delay_line #(
.WIDTH(FEEDBACK_W * 2), .DEPTH(MAX_VECTOR_LEN - MIN_FB_DELAY),
.DYNAMIC_DELAY(1), .DEFAULT_DATA(0), .OUT_REG(1)
) delay_line_inst (
.clk(clk), .clk_en(chain_en[1]), .reset(reset),
.stb_in(1'b1),
.data_in({fb_trunc_i[FEEDBACK_W-1:0], fb_trunc_q[FEEDBACK_W-1:0]}),
.delay(reg_fb_delay),
.data_out({fb_sum_del_i, fb_sum_del_q})
);
// Round the accumulator output to produce the final output
round #(
.bits_in(FB_PROD_W-ACCUM_HEADROOM), .bits_out(OUT_W)
) out_round_i_inst (
.in(fb_sum_i_reg[FB_PROD_W-ACCUM_HEADROOM-1:0]), .out(out_i_rnd), .err()
);
round #(
.bits_in(FB_PROD_W-ACCUM_HEADROOM), .bits_out(OUT_W)
) out_round_q_inst (
.in(fb_sum_q_reg[FB_PROD_W-ACCUM_HEADROOM-1:0]), .out(out_q_rnd), .err()
);
endmodule // vector_iir
|