1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
//
// Copyright 2013, 2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
module chdr_16s_to_8s
#(
parameter BASE=0
)
(
input clk,
input rst,
// axi4 stream slave interface
input [63:0] i_tdata,
input i_tlast,
input i_tvalid,
output i_tready,
// axi4 stream master interface
output reg [63:0] o_tdata,
output o_tlast,
output o_tvalid,
input o_tready,
// settings bus slave interface
input set_stb,
input [7:0] set_addr,
input [31:0] set_data,
output [31:0] debug
);
// split up for lazyness reasons
wire [15:0] fixed0 = i_tdata[63:48];
wire [15:0] fixed1 = i_tdata[47:32];
wire [15:0] fixed2 = i_tdata[31:16];
wire [15:0] fixed3 = i_tdata[15:0];
wire [7:0] rounded_cur0;
wire [7:0] rounded_cur1;
wire [7:0] rounded_cur2;
wire [7:0] rounded_cur3;
// Parse CHDR info
wire chdr_has_time = i_tdata[61];
// CHDR has either 8 bytes of header or 16 if VITA time is included.
wire [15:0] chdr_header_bytes = chdr_has_time ? 16 : 8;
// Calculate size of samples input in bytes by taking CHDR size filed
// and subtracting header length.
wire [15:0] sample_byte_count_in = i_tdata[47:32] - chdr_header_bytes;
// Calculate size of samples to be output by taking input size
// and dividing by two as sizeof(Q15) = 2*sizeof(Q7)
wire [15:0] sample_byte_count_out = sample_byte_count_in >> 1;
// Calculate size of output CHDR packet by adding back header size to new
// payload size.
wire [15:0] output_chdr_pkt_size = sample_byte_count_out + chdr_header_bytes;
// Make routing (SID) available via settings bus
wire set_sid;
wire [15:0] new_sid_dst;
setting_reg #
(
.my_addr(BASE),
.width(17)
)
new_destination
(
.clk(clk),
.rst(rst),
.strobe(set_stb),
.addr(set_addr),
.in(set_data),
.out({set_sid, new_sid_dst[15:0]}),
.changed()
);
wire handshake_ok = o_tready & i_tvalid;
reg [7:0] rounded_old0;
reg [7:0] rounded_old1;
reg [7:0] rounded_old2;
reg [7:0] rounded_old3;
// respect your elders, yo
always @ (posedge clk)
if (rst)
{rounded_old0, rounded_old1, rounded_old2, rounded_old3} <= 32'h0;
else if (handshake_ok) begin
{rounded_old0, rounded_old1} <= {rounded_cur0, rounded_cur1};
{rounded_old2, rounded_old3} <= {rounded_cur2, rounded_cur3};
end
localparam HEADER = 2'd0;
localparam TIME = 2'd1;
localparam PREPARE = 2'd2;
localparam OUTPUT = 2'd3;
reg [1:0] state;
always @(posedge clk) begin
if (rst)
state <= HEADER;
else case(state)
HEADER:
// In case we see a i_last we just wait for the
// next header here, otherwise move on to the next states
if (handshake_ok & !i_tlast)
state <= chdr_has_time ? TIME : PREPARE;
TIME:
// If we get a premature end of burst go back
// to searching for the start of a new packet
if (handshake_ok)
state <= i_tlast ? HEADER: PREPARE;
PREPARE:
if (handshake_ok)
state <= i_tlast ? HEADER: OUTPUT;
OUTPUT:
if (handshake_ok)
state <= i_tlast ? HEADER: PREPARE;
default:
state <= HEADER;
endcase
end
round #
(
.bits_in(16),
.bits_out(8)
)
round0
(
.in(fixed0),
.out(rounded_cur0),
.err()
);
round #
(
.bits_in(16),
.bits_out(8)
)
round1
(
.in(fixed1),
.out(rounded_cur1),
.err()
);
round #
(
.bits_in(16),
.bits_out(8)
)
round2
(
.in(fixed2),
.out(rounded_cur2),
.err()
);
round #
(
.bits_in(16),
.bits_out(8))
round3
(
.in(fixed3),
.out(rounded_cur3),
.err()
);
always @(*)
case(state)
HEADER:
o_tdata = {i_tdata[63:48], output_chdr_pkt_size,
set_sid ? {i_tdata[15:0], new_sid_dst[15:0]} : i_tdata[31:0]};
TIME:
o_tdata = i_tdata;
PREPARE:
// Here the second half of this stuff is invalid, as the header will
// take care of that by setting the correct length field,
// we assign the same to simplify the mux
o_tdata = {rounded_cur0, rounded_cur1, rounded_cur2, rounded_cur3,
rounded_cur0, rounded_cur1, rounded_cur2, rounded_cur3};
OUTPUT:
o_tdata = {rounded_old0, rounded_old1, rounded_old2, rounded_old3,
rounded_cur0, rounded_cur1, rounded_cur2, rounded_cur3};
default:
o_tdata = i_tdata;
endcase
assign o_tvalid = i_tvalid && (state != PREPARE || i_tlast);
assign i_tready = o_tready || (state == PREPARE && !i_tlast);
assign o_tlast = i_tlast;
endmodule
|