1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
//
// Copyright 2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
module new_rx_framer
#(
parameter BASE=0,
parameter CHIPSCOPE=0,
parameter SAMPLE_FIFO_SIZE=10
)
(input clk, input reset, input clear,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input [63:0] vita_time,
input strobe,
input [31:0] sample,
input run,
input eob,
output full,
output reg [11:0] seqnum,
output [31:0] sid,
output [63:0] o_tdata, output o_tlast, output o_tvalid, input o_tready,
output [31:0] debug
);
reg [15:0] len;
reg [63:0] hold_time;
wire [63:0] dfifo_tdata;
wire dfifo_tlast, dfifo_tvalid, dfifo_tready;
wire [80:0] hfifo_tdata;
wire hfifo_tvalid, hfifo_tready;
wire [63:0] o_tdata_int;
wire o_tlast_int, o_tvalid_int, o_tready_int;
wire [15:0] sample_space;
wire [15:0] maxlen;
reg [31:0] holding;
// FIXME need to handle case where hdr fifo is full (i.e. too many tiny packets)
assign full = (sample_space == 16'd0) | (sample_space == 16'd1) | ~hdr_tready;
setting_reg #(.my_addr(BASE), .width(16)) sr_maxlen
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(maxlen),.changed());
wire sid_changed;
setting_reg #(.my_addr(BASE+1), .width(32)) sr_sid
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(sid),.changed(sid_changed));
localparam START = 0;
localparam SECOND = 1;
localparam FIRST = 2;
reg [1:0] instate;
reg [15:0] numsamps;
reg nearly_eop;
always @(posedge clk)
if(reset | clear)
begin
instate <= START;
numsamps <= 0;
nearly_eop <= 0;
end
else if (run)
case(instate)
//
// Start a new packet in this state
//
START :
if(strobe)
if(eop)
begin
instate <= START;
numsamps <= 0;
nearly_eop <= 0;
end
else
begin
instate <= SECOND;
numsamps <= numsamps + 1;
nearly_eop <= (numsamps >= (maxlen-2));
end // else: !if(eop)
//
// Second 32 bit sample in a 64bit word
//
SECOND :
if(strobe)
if(eop)
begin
instate <= START;
numsamps <= 0;
nearly_eop <= 0;
end
else
begin
instate <= FIRST;
numsamps <= numsamps + 1;
nearly_eop <= (numsamps >= (maxlen-2));
end // else: !if(eop)
//
// First 32bit sample in a 64bit word.
//
FIRST :
if(strobe)
if(eop)
begin
instate <= START;
numsamps <= 0;
nearly_eop <= 0;
end
else
begin
instate <= SECOND;
numsamps <= numsamps + 1;
nearly_eop <= (numsamps >= (maxlen-2));
end
endcase // case (instate)
else begin
instate <= START;
numsamps <= 0;
nearly_eop <= 0;
end
always @(posedge clk)
if(strobe && run)
begin
holding <= sample;
if(instate == START)
hold_time <= vita_time;
end
always @(posedge clk)
if(reset | clear)
len <= 5;
else
if(strobe && run)
if(sample_tlast)
len <= 5;
else
len <= len + 1;
always @(posedge clk)
if(reset | clear | sid_changed)
seqnum <= 12'd0;
else
if(o_tlast_int & o_tvalid_int & o_tready_int)
seqnum <= seqnum + 12'd1;
wire eop = eob | nearly_eop | full;
wire [63:0] sample_tdata = (instate == SECOND) ? {holding, sample} : {sample, 32'h0};
wire sample_tlast = eop;
wire sample_tvalid = run & strobe & ( (instate == SECOND) | eop );
wire sample_tready;
wire [80:0] hdr_tdata = {eob,len[13:0],2'b0,(instate == START) ? vita_time : hold_time};
wire hdr_tvalid = sample_tlast && sample_tvalid && sample_tready;
wire hdr_tready;
wire [80:0] hfifo_tdata_tmp;
wire hfifo_tvalid_tmp, hfifo_tready_tmp;
axi_fifo #(.WIDTH(65), .SIZE(SAMPLE_FIFO_SIZE)) datafifo
(.clk(clk), .reset(reset), .clear(clear),
.i_tdata({sample_tlast,sample_tdata}), .i_tvalid(sample_tvalid), .i_tready(sample_tready),
.o_tdata({dfifo_tlast,dfifo_tdata}), .o_tvalid(dfifo_tvalid), .o_tready(dfifo_tready),
.space(sample_space), .occupied());
axi_fifo_short #(.WIDTH(81)) hdrfifo
(.clk(clk), .reset(reset), .clear(clear),
.i_tdata(hdr_tdata), .i_tvalid(hdr_tvalid), .i_tready(hdr_tready),
.o_tdata(hfifo_tdata_tmp), .o_tvalid(hfifo_tvalid_tmp), .o_tready(hfifo_tready_tmp),
.space(), .occupied());
axi_fifo_short #(.WIDTH(81)) hdrfifo2
(.clk(clk), .reset(reset), .clear(clear),
.i_tdata(hfifo_tdata_tmp), .i_tvalid(hfifo_tvalid_tmp), .i_tready(hfifo_tready_tmp),
.o_tdata(hfifo_tdata), .o_tvalid(hfifo_tvalid), .o_tready(hfifo_tready),
.space(), .occupied());
// The output state machine is responsible for forming output packets.
// Output packets are formed by combining the entries in the header fifo,
// and the samples in the data fifo. A single entry in the header fifo
// contains both the compressed header and the 64 bit time stamp.
reg [1:0] outstate;
localparam OUT_IDLE = 2'd0;
localparam OUT_HEAD = 2'd1;
localparam OUT_TIME = 2'd2;
localparam OUT_BODY = 2'd3;
always @(posedge clk)
if(reset | clear)
outstate <= OUT_IDLE;
else
case(outstate)
OUT_IDLE :
if(hfifo_tvalid) //having a header signals a complete packet
outstate <= OUT_HEAD;
OUT_HEAD :
if(o_tvalid_int && o_tready_int)
outstate <= OUT_TIME;
OUT_TIME :
if(o_tvalid_int && o_tready_int)
outstate <= OUT_BODY;
OUT_BODY :
if(o_tvalid_int && o_tready_int && o_tlast_int)
outstate <= OUT_IDLE;
endcase // case (outstate)
//output data mux feeds from single line of header fifo or the data fifo
assign o_tdata_int = (outstate == OUT_HEAD) ? { 3'b001, hfifo_tdata[80], seqnum, hfifo_tdata[79:64], sid} :
(outstate == OUT_TIME) ? hfifo_tdata[63:0] : dfifo_tdata;
//output the last signal from the data fifo
assign o_tlast_int = (outstate == OUT_BODY) ? dfifo_tlast : 1'b0;
//output valid connected to data valid in non-IDLE states
assign o_tvalid_int = (outstate != OUT_IDLE) & dfifo_tvalid;
//only pop from header fifo on the very last transaction
assign hfifo_tready = o_tvalid_int && o_tready_int && o_tlast_int;
//connect data fifo ready with out ready in the BODY state
assign dfifo_tready = (outstate == OUT_BODY) ? o_tready_int : 1'b0;
axi_fifo_short #(.WIDTH(65)) output_fifo
(.clk(clk), .reset(reset), .clear(clear),
.i_tdata({o_tlast_int, o_tdata_int}), .i_tvalid(o_tvalid_int), .i_tready(o_tready_int),
.o_tdata({o_tlast, o_tdata}), .o_tvalid(o_tvalid), .o_tready(o_tready),
.space(), .occupied());
/* -----\/----- EXCLUDED -----\/-----
assign debug[3:0] = {instate, outstate};
assign debug[7:4] = {1'b0, sample_tlast, sample_tvalid, sample_tready};
assign debug[11:8] = {1'b0, 1'b0, hfifo_tvalid, hfifo_tready};
assign debug[15:12] = {1'b0, dfifo_tlast, dfifo_tvalid, dfifo_tready};
assign debug[19:16] = {1'b0, o_tlast_int, o_tvalid_int, o_tready_int};
-----/\----- EXCLUDED -----/\----- */
assign debug = {
sample_tlast, //15
sample_tvalid,//14
sample_tready,//13
dfifo_tvalid, //12
dfifo_tready, //11
hdr_tvalid, //10
hdr_tready, //9
hfifo_tvalid, //8
hfifo_tready, //7
eob, //6
nearly_eop, //5
full, //4
outstate[1:0], //3:2
instate[1:0] //1:0
};
endmodule // new_rx_framer
|