1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
//
// Copyright 2013 Ettus Research LLC
// Copyright 2017 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//
//------------------------------------------------------------------
//
// In SISO mode, we output a clock thats 1x the frequency of the Catalina
// source-synchronous bus clock to be used as the radio_clk.
// In MIMO mode, we output a clock thats 1/2 the frequency of the Catalina
// source-synchronous bus clock to be used as the radio_clk.
//
//------------------------------------------------------------------
module b200_io
(
input reset,
input mimo,
// Baseband sample interface
output radio_clk,
output [11:0] rx_i0,
output [11:0] rx_q0,
output [11:0] rx_i1,
output [11:0] rx_q1,
input [11:0] tx_i0,
input [11:0] tx_q0,
input [11:0] tx_i1,
input [11:0] tx_q1,
// Catalina interface
input rx_clk,
input rx_frame,
input [11:0] rx_data,
output tx_clk,
output tx_frame,
output [11:0] tx_data
);
genvar z;
//------------------------------------------------------------------
//
// Synchronize MIMO signal from bus_clk to siso_clk.
//
//------------------------------------------------------------------
reg mimo_sync, mimo_sync2;
always @(posedge siso_clk) begin
mimo_sync <= mimo_sync2;
mimo_sync2 <= mimo;
end
//------------------------------------------------------------------
// Clock Buffering.
// BUFIO2 drives all IDDR2 and ODDR2 cells directly in bank3.
// Need two pairs of BUFIO2 one pair each for Top Left and Bottom Left half banks.
//------------------------------------------------------------------
wire rx_clk_buf;
wire mimo_clk_unbuf;
wire siso_clk_unbuf;
wire siso2_clk_unbuf;
IBUFG clk_ibufg (.O(rx_clk_buf), .I(rx_clk));
//------------------------------------------------------------------
//
// Buffers for LEFT TOP half bank pins
// BUFIO2_X0Y22
//
//------------------------------------------------------------------
BUFIO2 #(
.DIVIDE(4),
.DIVIDE_BYPASS("FALSE"),
.I_INVERT("FALSE"),
.USE_DOUBLER("TRUE"))
clk_bufio_lt
(
.IOCLK(io_clk_lt),
.DIVCLK(mimo_clk_unbuf), // Non-inverted source of 1/2x interface clock for radio_clk
.SERDESSTROBE(),
.I(rx_clk_buf)
);
// BUFIO2_X0Y23
BUFIO2 #(
.DIVIDE(1),
.DIVIDE_BYPASS("FALSE"),
.I_INVERT("TRUE"),
.USE_DOUBLER("FALSE"))
clk_bufio_lt_b
(
.IOCLK(io_clk_lt_b),
.DIVCLK(siso_clk2_unbuf), // Inverted source of 1x interface clock for radio_clk
.SERDESSTROBE(),
.I(rx_clk_buf)
);
//------------------------------------------------------------------
//
// Buffers for LEFT BOTTOM half bank pins
// BUFIO2_X1Y14
//
//------------------------------------------------------------------
BUFIO2 #(
.DIVIDE(1),
.DIVIDE_BYPASS("FALSE"),
.I_INVERT("FALSE"),
.USE_DOUBLER("FALSE"))
clk_bufio_lb
(
.IOCLK(io_clk_lb),
.DIVCLK(siso_clk_unbuf), // Non-inverted source of 1x interface clock for local IO use
.SERDESSTROBE(),
.I(rx_clk_buf)
);
// BUFIO2_X1Y15
BUFIO2 #(
.DIVIDE(1),
.DIVIDE_BYPASS("FALSE"),
.I_INVERT("TRUE"),
.USE_DOUBLER("FALSE"))
clk_bufio_lb_b
(
.IOCLK(io_clk_lb_b),
.DIVCLK(),
.SERDESSTROBE(),
.I(rx_clk_buf)
);
//------------------------------------------------------------------
// Always-on SISO clk needed to load/unload DDR2 I/O Regs
//------------------------------------------------------------------
BUFG siso_clk_bufg (
.I(siso_clk_unbuf),
.O(siso_clk)
);
//------------------------------------------------------------------
// 2-1 mux combined with BUFG to drive global radio_clk.
// Note: Not addressed setup/hold constraints of S input ...unsure if anything "bad" can happen here.
//------------------------------------------------------------------
BUFGMUX #(
.CLK_SEL_TYPE("SYNC"))
radio_clk_bufg (
.I0(siso_clk2_unbuf),
.I1(mimo_clk_unbuf),
.S(mimo_sync),
.O(radio_clk)
);
//------------------------------------------------------------------
// RX Frame Signal - In bank 3 LB
//------------------------------------------------------------------
wire rx_frame_0, rx_frame_1;
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_frame (
.Q0(rx_frame_1),
.Q1(rx_frame_0),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_frame),
.R(1'b0),
.S(1'b0));
reg rx_frame_d1, rx_frame_d2;
always @(posedge siso_clk)
if(~mimo_sync)
{ rx_frame_d2, rx_frame_d1 } <= { rx_frame_1, 1'b0 };
else
{ rx_frame_d2, rx_frame_d1 } <= { rx_frame_d1, rx_frame_1 };
//------------------------------------------------------------------
// RX Data Bus - In bank3 both LT and LB
//------------------------------------------------------------------
wire [11:0] rx_i,rx_q;
// Bit0 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i0 (
.Q0(rx_q[0]),
.Q1(rx_i[0]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[0]),
.R(1'b0),
.S(1'b0));
// Bit1 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i1 (
.Q0(rx_q[1]),
.Q1(rx_i[1]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[1]),
.R(1'b0),
.S(1'b0));
// Bit2 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i2 (
.Q0(rx_q[2]),
.Q1(rx_i[2]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[2]),
.R(1'b0),
.S(1'b0));
// Bit3 LT
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i3 (
.Q0(rx_q[3]),
.Q1(rx_i[3]),
.C0(io_clk_lt),
.C1(io_clk_lt_b),
.CE(1'b1),
.D(rx_data[3]),
.R(1'b0),
.S(1'b0));
// Bit4 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i4 (
.Q0(rx_q[4]),
.Q1(rx_i[4]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[4]),
.R(1'b0),
.S(1'b0));
// Bit5 LT
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i5 (
.Q0(rx_q[5]),
.Q1(rx_i[5]),
.C0(io_clk_lt),
.C1(io_clk_lt_b),
.CE(1'b1),
.D(rx_data[5]),
.R(1'b0),
.S(1'b0));
// Bit6 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i6 (
.Q0(rx_q[6]),
.Q1(rx_i[6]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[6]),
.R(1'b0),
.S(1'b0));
// Bit7 LT
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i7 (
.Q0(rx_q[7]),
.Q1(rx_i[7]),
.C0(io_clk_lt),
.C1(io_clk_lt_b),
.CE(1'b1),
.D(rx_data[7]),
.R(1'b0),
.S(1'b0));
// Bit8 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i8 (
.Q0(rx_q[8]),
.Q1(rx_i[8]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[8]),
.R(1'b0),
.S(1'b0));
// Bit9 LT
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i9 (
.Q0(rx_q[9]),
.Q1(rx_i[9]),
.C0(io_clk_lt),
.C1(io_clk_lt_b),
.CE(1'b1),
.D(rx_data[9]),
.R(1'b0),
.S(1'b0));
// Bit10 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i10 (
.Q0(rx_q[10]),
.Q1(rx_i[10]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[10]),
.R(1'b0),
.S(1'b0));
// Bit11 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i11 (
.Q0(rx_q[11]),
.Q1(rx_i[11]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[11]),
.R(1'b0),
.S(1'b0));
//------------------------------------------------------------------
//
// De-mux I & Q, Ch A & B onto fullrate clock.
//
// In all modes we grab data from the IDDR2 using negedge of siso_clk.
// IDDR2 updates all Q pins on posedge of io_clk. siso_clk does not have aligned phase
// with siso_clk...siso_clk is always a little more delayed than io_clk.
// This small delay is always much smaller than half a clk cycle. Thus by sampling the Q outputs
// with negedge siso_clk we avoid any risk of a race condition (hold violation on receiveing register).
//
// In SISO mode data is replicated onto both CH0 and CH1 for max flexibility in using the DDC's.
//
//------------------------------------------------------------------
reg [11:0] rx_i_del, rx_q_del;
reg [11:0] rx_i0_siso_pos;
reg [11:0] rx_q0_siso_pos;
reg [11:0] rx_i1_siso_pos;
reg [11:0] rx_q1_siso_pos;
reg [11:0] rx_i0_siso_neg;
reg [11:0] rx_q0_siso_neg;
reg [11:0] rx_i1_siso_neg;
reg [11:0] rx_q1_siso_neg;
reg [11:0] rx_i0_siso;
reg [11:0] rx_q0_siso;
reg [11:0] rx_i1_siso;
reg [11:0] rx_q1_siso;
always @(negedge siso_clk)
if(mimo_sync)
// rx_frame_0 was sampled by same falling io_clk edge as rx_i[x]
// rx_frame_0 == 0 causes I & Q to be allocated to CH0
if(rx_frame_0) begin
rx_i_del[11:0] <= rx_i[11:0];
rx_q_del[11:0] <= rx_q[11:0];
end
else begin
// Deal with the fact that Ch A and Ch B are labelled in silkscreen opposite to their documentation in AD9361.
rx_i0_siso[11:0] <= rx_i[11:0];
rx_q0_siso[11:0] <= rx_q[11:0];
rx_i1_siso[11:0] <= rx_i_del[11:0];
rx_q1_siso[11:0] <= rx_q_del[11:0];
end
else begin
rx_i0_siso[11:0] <= rx_i[11:0];
rx_q0_siso[11:0] <= rx_q[11:0];
rx_i1_siso[11:0] <= rx_i[11:0];
rx_q1_siso[11:0] <= rx_q[11:0];
end // else: !if(rx_frame_0)
//------------------------------------------------------------------
//
// Now prepare data for crossing into radio_clk domain which can be for SISO mode (inverted) siso_clk or for MIMO mode siso_clk/2.
// In MIMO mode tx_strobe is used to maintain a known phase relationship betwwen siso_clk and radio_clk.
// (Note: Negedge or posedge is used conditionally so that we have massive margin against a fast-path race condition
// betwwen siso_clk and radio_clk). This kind of arrangement could still lead to confusion in timing analysis
// even if it works in the real world depending on how well the STA tool can do automatic case analysis.
//
//------------------------------------------------------------------
// This code lock only relevent in MIMO mode.
always @(negedge siso_clk)
if (tx_strobe)
begin
rx_i0_siso_neg[11:0] <= rx_i0_siso[11:0];
rx_q0_siso_neg[11:0] <= rx_q0_siso[11:0];
rx_i1_siso_neg[11:0] <= rx_i1_siso[11:0];
rx_q1_siso_neg[11:0] <= rx_q1_siso[11:0];
end
// This code block only relevent in SISO mode.
always @(posedge siso_clk)
begin
rx_i0_siso_pos[11:0] <= rx_i0_siso[11:0];
rx_q0_siso_pos[11:0] <= rx_q0_siso[11:0];
rx_i1_siso_pos[11:0] <= rx_i1_siso[11:0];
rx_q1_siso_pos[11:0] <= rx_q1_siso[11:0];
end
assign rx_i0 = (mimo_sync) ? rx_i0_siso_neg : rx_i0_siso_pos;
assign rx_q0 = (mimo_sync) ? rx_q0_siso_neg : rx_q0_siso_pos;
assign rx_i1 = (mimo_sync) ? rx_i1_siso_neg : rx_i1_siso_pos;
assign rx_q1 = (mimo_sync) ? rx_q1_siso_neg : rx_q1_siso_pos;
//------------------------------------------------------------------
// TX Data Bus - In bank3 LB
//------------------------------------------------------------------
reg [11:0] tx_i,tx_q;
reg tx_strobe_del;
generate
for(z = 0; z < 12; z = z + 1)
begin : gen_pins
ODDR2 #(
.DDR_ALIGNMENT("C0"), .SRTYPE("ASYNC"))
oddr2 (
.Q(tx_data[z]), .C0(io_clk_lb), .C1(io_clk_lb_b),
.CE(1'b1), .D0(tx_i[z]), .D1(tx_q[z]), .R(1'b0), .S(1'b0));
end
endgenerate
//------------------------------------------------------------------
// TX Frame Signal - In bank 3 LB
//------------------------------------------------------------------
ODDR2 #(
.DDR_ALIGNMENT("C0"), .SRTYPE("ASYNC"))
oddr2_frame (
.Q(tx_frame), .C0(io_clk_lb), .C1(io_clk_lb_b),
.CE(1'b1), .D0(tx_strobe_del), .D1(mimo_sync & tx_strobe_del), .R(1'b0), .S(1'b0));
//------------------------------------------------------------------
// TX Clock Signal - In bank 3 LB
//------------------------------------------------------------------
ODDR2 #(
.DDR_ALIGNMENT("C0"), .SRTYPE("ASYNC"))
oddr2_clk (
.Q(tx_clk), .C0(io_clk_lb), .C1(io_clk_lb_b),
.CE(1'b1), .D0(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));
//------------------------------------------------------------------
//
// Mux I & Q, Ch A & B onto fullrate clockTX bus to AD9361
//
//------------------------------------------------------------------
wire tx_strobe;
reg [11:0] tx_i_del, tx_q_del;
reg find_radio_clk_phase = 1'b0;
reg find_radio_clk_phase_del;
always @(posedge radio_clk)
find_radio_clk_phase <= ~find_radio_clk_phase;
always @(negedge radio_clk)
find_radio_clk_phase_del <= find_radio_clk_phase;
assign tx_strobe = mimo_sync ? (find_radio_clk_phase_del ^ find_radio_clk_phase) : 1'b1;
always @(posedge siso_clk)
tx_strobe_del <= tx_strobe;
// This strange piece of logic allows either USRP DUC to drive the AD9361 in SISO mode.
// This is principly used in the CODEC loopback test.
wire [11:0] tx_im = (mimo_sync || tx_i0 != 12'h0) ? tx_i0 : tx_i1;
wire [11:0] tx_qm = (mimo_sync || tx_q0 != 12'h0) ? tx_q0 : tx_q1;
// Deal with the fact that Ch A and Ch B are labelled in silkscreen opposite to their documentation in AD9361.
// (Except on B200 based on AD9364 where only the true Ch A is stuffed)
always @(posedge siso_clk)
if(tx_strobe)
begin
{tx_i,tx_q} <= mimo_sync ? {tx_i1,tx_q1} : {tx_im,tx_qm};
{tx_i_del,tx_q_del} <= {tx_i0,tx_q0};
end
else
{tx_i,tx_q} <= {tx_i_del,tx_q_del};
//
// Debug
//
/* -----\/----- EXCLUDED -----\/-----
wire [35:0] CONTROL0;
reg [11:0] tx_i_del_debug, tx_q_del_debug;
reg [11:0] tx_i_debug,tx_q_debug;
reg [11:0] tx_i0_debug,tx_q0_debug;
reg find_radio_clk_phase_debug;
reg find_radio_clk_phase_del_debug;
reg tx_strobe_debug;
reg tx_strobe_del_debug;
always @(posedge siso_clk) begin
tx_i_del_debug <= tx_i_del;
tx_q_del_debug <= tx_q_del;
tx_i_debug <= tx_i;
tx_q_debug <= tx_q;
tx_i0_debug <=tx_i0;
tx_q0_debug <= tx_q0;
find_radio_clk_phase_debug <= find_radio_clk_phase;
find_radio_clk_phase_del_debug <= find_radio_clk_phase_del;
tx_strobe_debug <= tx_strobe;
tx_strobe_del_debug <= tx_strobe_del;
end
chipscope_icon chipscope_icon_i0
(
.CONTROL0(CONTROL0) // INOUT BUS [35:0]
);
chipscope_ila_128 chipscope_ila_i0
(
.CONTROL(CONTROL0), // INOUT BUS [35:0]
.CLK(siso_clk), // IN
.TRIG0(
{
tx_i_del_debug[11:0],
tx_q_del_debug[11:0],
tx_i_debug[11:0],
tx_q_debug[11:0],
tx_i0_debug[11:0],
tx_q0_debug[11:0],
find_radio_clk_phase_debug,
find_radio_clk_phase_del_debug,
tx_strobe_debug,
tx_strobe_del_debug
}
)
);
-----/\----- EXCLUDED -----/\----- */
endmodule
|