1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
///////////////////////////////////////////////////////////////////
//
// Copyright 2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: n3xx_mgt_io_core
// Description:
// Encapsulates the PSC/PMA, the MAC layer and the control interface
// for 1GbE, 10GbE and Aurora
//
//////////////////////////////////////////////////////////////////////
module n3xx_mgt_io_core #(
parameter PROTOCOL = "10GbE", // Must be {10GbE, 1GbE, Aurora, Disabled}
parameter REG_BASE = 0,
parameter REG_DWIDTH = 32,
parameter REG_AWIDTH = 14,
parameter GT_COMMON = 1,
parameter [7:0] PORTNUM = 8'd0,
parameter MDIO_EN = 0,
parameter [4:0] MDIO_PHYADDR = 5'd0
)(
// Resets
input areset,
input bus_rst,
// Clocks
input gt_refclk,
input gb_refclk,
input misc_clk,
input bus_clk,
input user_clk,
input sync_clk,
// SFP high-speed IO
output txp,
output txn,
input rxp,
input rxn,
// SFP low-speed IO
input sfpp_rxlos,
input sfpp_tx_fault,
output sfpp_tx_disable,
// Data port: Ethernet TX
input [63:0] s_axis_tdata,
input [3:0] s_axis_tuser,
input s_axis_tlast,
input s_axis_tvalid,
output s_axis_tready,
// Data port: Ethernet RX
output [63:0] m_axis_tdata,
output [3:0] m_axis_tuser,
output m_axis_tlast,
output m_axis_tvalid,
input m_axis_tready,
// Register port
input reg_wr_req,
input [REG_AWIDTH-1:0] reg_wr_addr,
input [REG_DWIDTH-1:0] reg_wr_data,
input reg_rd_req,
input [REG_AWIDTH-1:0] reg_rd_addr,
output reg_rd_resp,
output [REG_DWIDTH-1:0] reg_rd_data,
// GT Common
input qpllrefclklost,
input qplllock,
input qplloutclk,
input qplloutrefclk,
input mmcm_locked,
output qpllreset,
output gt_pll_lock,
output gt_tx_out_clk_unbuf,
// Misc
output [31:0] port_info,
output link_up,
output reg activity
);
//-----------------------------------------------------------------
// Registers
//-----------------------------------------------------------------
localparam [7:0] COMPAT_NUM = 8'd2;
// Common registers
localparam [REG_AWIDTH-1:0] REG_PORT_INFO = REG_BASE + 'h0;
localparam [REG_AWIDTH-1:0] REG_MAC_CTRL_STATUS = REG_BASE + 'h4;
localparam [REG_AWIDTH-1:0] REG_PHY_CTRL_STATUS = REG_BASE + 'h8;
localparam [REG_AWIDTH-1:0] REG_MAC_LED_CTL = REG_BASE + 'hC;
// Ethernet specific
localparam [REG_AWIDTH-1:0] REG_ETH_MDIO_BASE = REG_BASE + 'h10;
// Aurora specific
localparam [REG_AWIDTH-1:0] REG_AURORA_OVERRUNS = REG_BASE + 'h20;
localparam [REG_AWIDTH-1:0] REG_CHECKSUM_ERRORS = REG_BASE + 'h24;
localparam [REG_AWIDTH-1:0] REG_BIST_CHECKER_SAMPS = REG_BASE + 'h28;
localparam [REG_AWIDTH-1:0] REG_BIST_CHECKER_ERRORS = REG_BASE + 'h2C;
wire reg_rd_resp_mdio;
reg reg_rd_resp_glob = 1'b0;
wire [REG_DWIDTH-1:0] reg_rd_data_mdio;
reg [REG_DWIDTH-1:0] reg_rd_data_glob = 32'h0;
// Protocol specific constants
wire [7:0] mgt_protocol;
wire [31:0] mac_ctrl_rst_val, phy_ctrl_rst_val;
wire [1:0] mac_led_ctl_rst_val = 2'h0;
generate
if (PROTOCOL == "Aurora") begin
assign mgt_protocol = 8'd3;
assign mac_ctrl_rst_val = 32'h0;
assign phy_ctrl_rst_val = 32'h0;
end else if (PROTOCOL == "10GbE") begin
assign mgt_protocol = 8'd2;
assign mac_ctrl_rst_val = {31'h0, 1'b1}; // tx_enable on reset
assign phy_ctrl_rst_val = 32'h0;
end else if (PROTOCOL == "1GbE") begin
assign mgt_protocol = 8'd1;
assign mac_ctrl_rst_val = {31'h0, 1'b1}; // tx_enable on reset
assign phy_ctrl_rst_val = 32'h0;
end else begin
assign mgt_protocol = 8'd0;
assign mac_ctrl_rst_val = 32'h0;
assign phy_ctrl_rst_val = 32'h0;
end
endgenerate
// Writable registers
reg [31:0] mac_ctrl_reg = 32'h0;
reg [31:0] phy_ctrl_reg = 32'h0;
reg [1:0] mac_led_ctl = 2'h0;
always @(posedge bus_clk) begin
if (bus_rst) begin
mac_ctrl_reg <= mac_ctrl_rst_val;
phy_ctrl_reg <= phy_ctrl_rst_val;
mac_led_ctl <= mac_led_ctl_rst_val;
end else if (reg_wr_req) begin
case(reg_wr_addr)
REG_MAC_CTRL_STATUS:
mac_ctrl_reg <= reg_wr_data;
REG_PHY_CTRL_STATUS:
phy_ctrl_reg <= reg_wr_data;
REG_MAC_LED_CTL:
mac_led_ctl <= reg_wr_data[1:0];
endcase
end
end
// Readable registers
wire [31:0] overruns;
wire [31:0] checksum_errors;
wire [47:0] bist_checker_samps;
wire [47:0] bist_checker_errors;
wire [31:0] mac_status, phy_status;
wire [31:0] mac_status_bclk, phy_status_bclk;
assign port_info = {COMPAT_NUM, 6'h0, activity, link_up, mgt_protocol, PORTNUM};
always @(posedge bus_clk) begin
// No reset handling needed for readback
if (reg_rd_req) begin
reg_rd_resp_glob <= 1'b1;
case(reg_rd_addr)
REG_PORT_INFO:
reg_rd_data_glob <= port_info;
REG_MAC_CTRL_STATUS:
reg_rd_data_glob <= mac_status_bclk;
REG_PHY_CTRL_STATUS:
reg_rd_data_glob <= phy_status_bclk;
REG_MAC_LED_CTL:
reg_rd_data_glob <= {30'd0, mac_led_ctl};
REG_AURORA_OVERRUNS:
reg_rd_data_glob <= overruns;
REG_CHECKSUM_ERRORS:
reg_rd_data_glob <= checksum_errors;
REG_BIST_CHECKER_SAMPS:
reg_rd_data_glob <= bist_checker_samps[47:16]; //Scale num samples by 2^16
REG_BIST_CHECKER_ERRORS:
reg_rd_data_glob <= bist_checker_errors[31:0]; //Don't scale errors
default:
reg_rd_resp_glob <= 1'b0;
endcase
end if (reg_rd_resp_glob) begin
reg_rd_resp_glob <= 1'b0;
end
end
synchronizer #( .STAGES(2), .WIDTH(32), .INITIAL_VAL(32'h0) ) mac_status_sync_i (
.clk(bus_clk), .rst(1'b0), .in(mac_status), .out(mac_status_bclk)
);
synchronizer #( .STAGES(2), .WIDTH(32), .INITIAL_VAL(32'h0) ) phy_status_sync_i (
.clk(bus_clk), .rst(1'b0), .in(phy_status), .out(phy_status_bclk)
);
// Regport Mux for response
regport_resp_mux #(
.WIDTH (REG_DWIDTH),
.NUM_SLAVES (2)
) reg_resp_mux_i (
.clk(bus_clk), .reset(bus_rst),
.sla_rd_resp({reg_rd_resp_mdio, reg_rd_resp_glob}),
.sla_rd_data({reg_rd_data_mdio, reg_rd_data_glob}),
.mst_rd_resp(reg_rd_resp), .mst_rd_data(reg_rd_data)
);
//-----------------------------------------------------------------
// Ethernet Specific: MDIO
//-----------------------------------------------------------------
wire mdc, mdio_m2s, mdio_s2m, mdio_s2m_sync;
generate
if ((PROTOCOL == "10GbE" || PROTOCOL == "1GbE") && (MDIO_EN == 1)) begin
mdio_master #(
.REG_BASE (REG_ETH_MDIO_BASE),
.REG_AWIDTH (REG_AWIDTH),
.MDC_DIVIDER (8'd200)
) mdio_master_i (
.clk (bus_clk),
.rst (bus_rst),
.mdc (mdc),
.mdio_in (mdio_s2m_sync),
.mdio_out (mdio_m2s),
.mdio_tri (),
.reg_wr_req (reg_wr_req),
.reg_wr_addr (reg_wr_addr),
.reg_wr_data (reg_wr_data),
.reg_rd_req (reg_rd_req),
.reg_rd_addr (reg_rd_addr),
.reg_rd_data (reg_rd_data_mdio),
.reg_rd_resp (reg_rd_resp_mdio)
);
// We can cross mdio_s2m into the bus_clk domain. A synchronizer is safe
// here because the bit is inherently async
synchronizer #(.INITIAL_VAL(1'b0)) mdio_s2m_sync_i (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(mdio_s2m), .out(mdio_s2m_sync)
);
end else begin
assign mdc = 1'b0;
assign mdio_m2s = 1'b0;
assign reg_rd_resp_mdio = 1'b0;
assign reg_rd_data_mdio = 32'h0;
end
endgenerate
generate
if (PROTOCOL == "10GbE") begin
//-----------------------------------------------------------------
// 10 Gigabit Ethernet
//-----------------------------------------------------------------
wire [63:0] xgmii_txd;
wire [7:0] xgmii_txc;
wire [63:0] xgmii_rxd;
wire [7:0] xgmii_rxc;
wire xge_phy_resetdone;
if (GT_COMMON == 1) begin
ten_gige_phy ten_gige_phy_i (
// Clocks and Reset
.areset(areset | phy_ctrl_reg[0]), // Asynchronous reset for entire core.
.refclk(gt_refclk), // Transciever reference clock: 156.25MHz
.clk156(gb_refclk), // Globally buffered core clock: 156.25MHz
.dclk(misc_clk), // Management/DRP clock: 78.125MHz
.sim_speedup_control(1'b0),
// GMII Interface (client MAC <=> PCS)
.xgmii_txd(xgmii_txd), // Transmit data from client MAC.
.xgmii_txc(xgmii_txc), // Transmit control signal from client MAC.
.xgmii_rxd(xgmii_rxd), // Received Data to client MAC.
.xgmii_rxc(xgmii_rxc), // Received control signal to client MAC.
// Tranceiver Interface
.txp(txp), // Differential +ve of serial transmission from PMA to PMD.
.txn(txn), // Differential -ve of serial transmission from PMA to PMD.
.rxp(rxp), // Differential +ve for serial reception from PMD to PMA.
.rxn(rxn), // Differential -ve for serial reception from PMD to PMA.
// Management: MDIO Interface
.mdc(mdc), // Management Data Clock
.mdio_in(mdio_m2s), // Management Data In
.mdio_out(mdio_s2m), // Management Data Out
.mdio_tri(), // Management Data Tristate
.prtad(MDIO_PHYADDR), // MDIO address
// General IO's
.core_status(phy_status[7:0]), // Core status
.resetdone(xge_phy_resetdone),
.signal_detect(~sfpp_rxlos), // Input from PMD to indicate presence of optical input. (Undocumented, but it seems Xilinx expect this to be inverted.)
.tx_fault(sfpp_tx_fault),
.tx_disable(sfpp_tx_disable),
.qpllreset(qpllreset),
.qplllock(qplllock),
.qplloutclk(qplloutclk),
.qplloutrefclk(qplloutrefclk),
.tx_out_clk(gt_tx_out_clk_unbuf)
);
end else begin
ten_gige_phy ten_gige_phy_i (
// Clocks and Reset
.areset(areset | phy_ctrl_reg[0]), // Asynchronous reset for entire core.
.refclk(gt_refclk), // Transciever reference clock: 156.25MHz
.clk156(gb_refclk), // Globally buffered core clock: 156.25MHz
.dclk(misc_clk), // Management/DRP clock: 78.125MHz
.sim_speedup_control(1'b0),
// GMII Interface (client MAC <=> PCS)
.xgmii_txd(xgmii_txd), // Transmit data from client MAC.
.xgmii_txc(xgmii_txc), // Transmit control signal from client MAC.
.xgmii_rxd(xgmii_rxd), // Received Data to client MAC.
.xgmii_rxc(xgmii_rxc), // Received control signal to client MAC.
// Tranceiver Interface
.txp(txp), // Differential +ve of serial transmission from PMA to PMD.
.txn(txn), // Differential -ve of serial transmission from PMA to PMD.
.rxp(rxp), // Differential +ve for serial reception from PMD to PMA.
.rxn(rxn), // Differential -ve for serial reception from PMD to PMA.
// Management: MDIO Interface
.mdc(mdc), // Management Data Clock
.mdio_in(mdio_m2s), // Management Data In
.mdio_out(mdio_s2m), // Management Data Out
.mdio_tri(), // Management Data Tristate
.prtad(MDIO_PHYADDR), // MDIO address
// General IO's
.core_status(phy_status[7:0]), // Core status
.resetdone(xge_phy_resetdone),
.signal_detect(~sfpp_rxlos), // Input from PMD to indicate presence of optical input. (Undocumented, but it seems Xilinx expect this to be inverted.)
.tx_fault(sfpp_tx_fault),
.tx_disable(sfpp_tx_disable)
);
assign qpllreset = 1'b0;
assign gt_pll_lock = 1'b0;
assign gt_tx_out_clk_unbuf = 1'b0;
end
xge_mac_wrapper #(
.PORTNUM(PORTNUM),
.WISHBONE(0)
) xge_mac_wrapper_i (
// XGMII
.xgmii_clk(gb_refclk),
.xgmii_txd(xgmii_txd),
.xgmii_txc(xgmii_txc),
.xgmii_rxd(xgmii_rxd),
.xgmii_rxc(xgmii_rxc),
// Client FIFO Interfaces
.sys_clk(bus_clk),
.sys_rst(bus_rst),
.rx_tdata(m_axis_tdata),
.rx_tuser(m_axis_tuser),
.rx_tlast(m_axis_tlast),
.rx_tvalid(m_axis_tvalid),
.rx_tready(m_axis_tready),
.tx_tdata(s_axis_tdata),
.tx_tuser(s_axis_tuser), // Bit[3] (error) is ignored for now.
.tx_tlast(s_axis_tlast),
.tx_tvalid(s_axis_tvalid),
.tx_tready(s_axis_tready),
// Other
.phy_ready(xge_phy_resetdone),
.ctrl_tx_enable(mac_ctrl_reg[0]),
.status_crc_error(mac_status[0]),
.status_fragment_error(mac_status[1]),
.status_txdfifo_ovflow(mac_status[2]),
.status_txdfifo_udflow(mac_status[3]),
.status_rxdfifo_ovflow(mac_status[4]),
.status_rxdfifo_udflow(mac_status[5]),
.status_pause_frame_rx(mac_status[6]),
.status_local_fault(mac_status[7]),
.status_remote_fault(mac_status[8]),
.wb_ack_o(),
.wb_dat_o(),
.wb_adr_i(1'b0),
.wb_clk_i(1'b0),
.wb_cyc_i(1'b0),
.wb_dat_i(1'b0),
.wb_rst_i(1'b0),
.wb_stb_i(1'b0),
.wb_we_i (1'b0),
.wb_int_o()
);
assign phy_status[31:8] = 24'h0;
assign mac_status[31:9] = 23'h0;
assign link_up = phy_status_bclk[0];
end else if (PROTOCOL == "1GbE") begin
//-----------------------------------------------------------------
// 1 Gigabit Ethernet
//-----------------------------------------------------------------
wire [7:0] gmii_txd, gmii_rxd;
wire gmii_tx_en, gmii_tx_er, gmii_rx_dv, gmii_rx_er;
wire gmii_clk;
wire gt0_qplloutclk, gt0_qplloutrefclk; //unused in 7-series Zynq
assign gt0_qplloutclk = 1'b0;
assign gt0_qplloutrefclk = 1'b0;
assign sfpp_tx_disable = 1'b0; // Always on.
if (GT_COMMON == 1) begin
one_gige_phy one_gige_phy_i (
.reset(areset | phy_ctrl_reg[0]), // Asynchronous reset for entire core.
.independent_clock(bus_clk),
.pma_reset_out(/*unused*/),
.gt0_qplloutclk_in(gt0_qplloutclk),
.gt0_qplloutrefclk_in(gt0_qplloutrefclk),
// Tranceiver Interface
.gtrefclk(gt_refclk), // Reference clock for MGT: 125MHz, very high quality.
.gtrefclk_bufg(gb_refclk), // Reference clock routed through a BUFG
.txp(txp), // Differential +ve of serial transmission from PMA to PMD.
.txn(txn), // Differential -ve of serial transmission from PMA to PMD.
.rxp(rxp), // Differential +ve for serial reception from PMD to PMA.
.rxn(rxn), // Differential -ve for serial reception from PMD to PMA.
// GMII Interface (client MAC <=> PCS)
.gmii_clk(gmii_clk), // Clock to client MAC.
.gmii_txd(gmii_txd), // Transmit data from client MAC.
.gmii_tx_en(gmii_tx_en), // Transmit control signal from client MAC.
.gmii_tx_er(gmii_tx_er), // Transmit control signal from client MAC.
.gmii_rxd(gmii_rxd), // Received Data to client MAC.
.gmii_rx_dv(gmii_rx_dv), // Received control signal to client MAC.
.gmii_rx_er(gmii_rx_er), // Received control signal to client MAC.
// Management: MDIO Interface
.mdc(mdc), // Management Data Clock
.mdio_i(mdio_m2s), // Management Data In
.mdio_o(mdio_s2m), // Management Data Out
.mdio_t(), // Management Data Tristate
.phyaddr(MDIO_PHYADDR), // MDIO address
.configuration_vector(5'd0), // Alternative to MDIO interface.
.configuration_valid(1'b1), // Validation signal for Config vector (MUST be 1 for proper functionality...undocumented)
// General IO's
.status_vector(phy_status[15:0]), // Core status.
.signal_detect(1'b1 /*Optical module not supported*/) // Input from PMD to indicate presence of optical input.
);
end else begin
one_gige_phy one_gige_phy_i (
.reset(areset | phy_ctrl_reg[0]), // Asynchronous reset for entire core.
.independent_clock(bus_clk),
// Tranceiver Interface
.gtrefclk(gt_refclk), // Reference clock for MGT: 125MHz, very high quality.
.gtrefclk_bufg(gb_refclk), // Reference clock routed through a BUFG
.txp(txp), // Differential +ve of serial transmission from PMA to PMD.
.txn(txn), // Differential -ve of serial transmission from PMA to PMD.
.rxp(rxp), // Differential +ve for serial reception from PMD to PMA.
.rxn(rxn), // Differential -ve for serial reception from PMD to PMA.
// GMII Interface (client MAC <=> PCS)
.gmii_clk(gmii_clk), // Clock to client MAC.
.gmii_txd(gmii_txd), // Transmit data from client MAC.
.gmii_tx_en(gmii_tx_en), // Transmit control signal from client MAC.
.gmii_tx_er(gmii_tx_er), // Transmit control signal from client MAC.
.gmii_rxd(gmii_rxd), // Received Data to client MAC.
.gmii_rx_dv(gmii_rx_dv), // Received control signal to client MAC.
.gmii_rx_er(gmii_rx_er), // Received control signal to client MAC.
// Management: MDIO Interface
.mdc(mdc), // Management Data Clock
.mdio_i(mdio_m2s), // Management Data In
.mdio_o(mdio_s2m), // Management Data Out
.mdio_t(), // Management Data Tristate
.phyaddr(MDIO_PHYADDR), // MDIO address
.configuration_vector(5'd0), // Alternative to MDIO interface.
.configuration_valid(1'b1), // Validation signal for Config vector (MUST be 1 for proper functionality...undocumented)
// General IO's
.status_vector(phy_status[15:0]), // Core status.
.signal_detect(1'b1 /*Optical module not supported*/) // Input from PMD to indicate presence of optical input.
);
assign qpllreset = 1'b0;
assign gt_pll_lock = 1'b0;
assign gt_tx_out_clk_unbuf = 1'b0;
end
simple_gemac_wrapper #(.RX_FLOW_CTRL(0), .PORTNUM(PORTNUM)) simple_gemac_wrapper_i
(
.clk125(gmii_clk),
.reset(areset),
.GMII_GTX_CLK(),
.GMII_TX_EN(gmii_tx_en),
.GMII_TX_ER(gmii_tx_er),
.GMII_TXD(gmii_txd),
.GMII_RX_CLK(gmii_clk),
.GMII_RX_DV(gmii_rx_dv),
.GMII_RX_ER(gmii_rx_er),
.GMII_RXD(gmii_rxd),
.sys_clk(bus_clk),
.rx_tdata(m_axis_tdata),
.rx_tuser(m_axis_tuser),
.rx_tlast(m_axis_tlast),
.rx_tvalid(m_axis_tvalid),
.rx_tready(m_axis_tready),
.tx_tdata(s_axis_tdata),
.tx_tuser(s_axis_tuser),
.tx_tlast(s_axis_tlast),
.tx_tvalid(s_axis_tvalid),
.tx_tready(s_axis_tready),
.wb_clk_i(1'b0),
.wb_rst_i(1'b0),
.wb_adr_i(8'h0),
.wb_dat_i(32'h0),
.wb_we_i(1'b0),
.wb_stb_i(1'b0),
.wb_cyc_i(1'b0),
.wb_dat_o(),
.wb_ack_o(),
.wb_int_o(),
.mdc(),
.mdio_out(1'b0),
.mdio_tri(),
.mdio_in(),
.debug_tx(),
.debug_rx()
);
assign phy_status[31:16] = 16'h0;
assign mac_status[31:0] = 32'h0;
assign link_up = phy_status_bclk[0];
assign gt_tx_out_clk_unbuf = 1'b0;
end else if (PROTOCOL == "Aurora") begin
//-----------------------------------------------------------------
// Aurora
//-----------------------------------------------------------------
wire user_rst;
wire [63:0] m2p_tdata, p2m_tdata;
wire m2p_tvalid, m2p_tready, p2m_tvalid;
wire channel_up, hard_err, soft_err, mac_crit_err;
wire bist_checker_en = mac_ctrl_reg[0];
wire bist_gen_en = mac_ctrl_reg[1];
wire bist_loopback_en = mac_ctrl_reg[2];
wire [5:0] bist_gen_rate = mac_ctrl_reg[8:3];
wire phy_areset = mac_ctrl_reg[9];
wire mac_clear = mac_ctrl_reg[10];
wire bist_checker_locked;
assign sfpp_tx_disable = 1'b0; // Always on.
if (GT_COMMON == 1) begin
aurora_phy_x1 aurora_phy_i (
// Resets
.areset(areset | phy_areset),
// Clocks
.refclk(gt_refclk),
.init_clk(misc_clk),
.user_clk(user_clk),
.user_rst(user_rst),
.sync_clk(sync_clk),
.qpllclk(qplloutclk),
.qpllrefclk(qplloutrefclk),
// GTX Serial I/O
.tx_p(txp),
.tx_n(txn),
.rx_p(rxp),
.rx_n(rxn),
// AXI4-Stream TX Interface
.s_axis_tdata(m2p_tdata),
.s_axis_tvalid(m2p_tvalid),
.s_axis_tready(m2p_tready),
// AXI4-Stream RX Interface
.m_axis_tdata(p2m_tdata),
.m_axis_tvalid(p2m_tvalid),
// AXI4-Lite Config Interface (unused)
.s_axi_awaddr(32'h0),
.s_axi_araddr(32'h0),
.s_axi_awvalid(1'b0),
.s_axi_awready(),
.s_axi_wdata(32'h0),
.s_axi_wvalid(1'b0),
.s_axi_wstrb(1'b0),
.s_axi_wready(),
.s_axi_bvalid(),
.s_axi_bresp(),
.s_axi_bready(1'b1),
.s_axi_arready(),
.s_axi_arvalid(1'b0),
.s_axi_rdata(),
.s_axi_rvalid(),
.s_axi_rresp(),
.s_axi_rready(1'b1),
// Status and Error Reporting Interface
.channel_up(channel_up),
.hard_err(hard_err),
.soft_err(soft_err),
.qplllock(qplllock),
.qpllreset(qpllreset),
.qpllrefclklost(qpllrefclklost),
.tx_out_clk(gt_tx_out_clk_unbuf),
.gt_pll_lock(gt_pll_lock),
.mmcm_locked(mmcm_locked)
);
end else begin
aurora_phy_x1 aurora_phy_i (
// Resets
.areset(areset | phy_areset),
// Clocks
.refclk(gt_refclk),
.init_clk(misc_clk),
.user_clk(user_clk),
.user_rst(user_rst),
// GTX Serial I/O
.tx_p(txp),
.tx_n(txn),
.rx_p(rxp),
.rx_n(rxn),
// AXI4-Stream TX Interface
.s_axis_tdata(m2p_tdata),
.s_axis_tvalid(m2p_tvalid),
.s_axis_tready(m2p_tready),
// AXI4-Stream RX Interface
.m_axis_tdata(p2m_tdata),
.m_axis_tvalid(p2m_tvalid),
// AXI4-Lite Config Interface (unused)
.s_axi_awaddr(32'h0),
.s_axi_araddr(32'h0),
.s_axi_awvalid(1'b0),
.s_axi_awready(),
.s_axi_wdata(32'h0),
.s_axi_wvalid(1'b0),
.s_axi_wstrb(1'b0),
.s_axi_wready(),
.s_axi_bvalid(),
.s_axi_bresp(),
.s_axi_bready(1'b1),
.s_axi_arready(),
.s_axi_arvalid(1'b0),
.s_axi_rdata(),
.s_axi_rvalid(),
.s_axi_rresp(),
.s_axi_rready(1'b1),
// Status and Error Reporting Interface
.channel_up(channel_up),
.hard_err(hard_err),
.soft_err(soft_err)
);
assign qpllreset = 1'b0;
assign gt_pll_lock = 1'b0;
assign gt_tx_out_clk_unbuf = 1'b0;
end
aurora_axis_mac #(
.PHY_ENDIANNESS ("LITTLE"),
.PACKET_MODE (1),
.MAX_PACKET_SIZE(1024),
.BIST_ENABLED (1)
) aurora_mac_i (
// Clocks and resets
.phy_clk(user_clk), .phy_rst(user_rst),
.sys_clk(bus_clk), .sys_rst(bus_rst),
.clear(mac_clear),
// PHY Interface (Synchronous to phy_clk)
.phy_s_axis_tdata(p2m_tdata),
.phy_s_axis_tvalid(p2m_tvalid),
.phy_m_axis_tdata(m2p_tdata),
.phy_m_axis_tvalid(m2p_tvalid),
.phy_m_axis_tready(m2p_tready),
// User Interface (Synchronous to sys_clk)
.s_axis_tdata(s_axis_tdata),
.s_axis_tlast(s_axis_tlast),
.s_axis_tvalid(s_axis_tvalid),
.s_axis_tready(s_axis_tready),
.m_axis_tdata(m_axis_tdata),
.m_axis_tlast(m_axis_tlast),
.m_axis_tvalid(m_axis_tvalid),
.m_axis_tready(m_axis_tready),
// PHY Status Inputs (Synchronous to phy_clk)
.channel_up(channel_up),
.hard_err(hard_err),
.soft_err(soft_err),
// Status and Error Outputs (Synchronous to sys_clk)
.overruns(overruns),
.soft_errors(),
.checksum_errors(checksum_errors),
.critical_err(mac_crit_err),
// BIST Interface (Synchronous to sys_clk)
.bist_gen_en(bist_gen_en),
.bist_gen_rate(bist_gen_rate),
.bist_checker_en(bist_checker_en),
.bist_loopback_en(bist_loopback_en),
.bist_checker_locked(bist_checker_locked),
.bist_checker_samps(bist_checker_samps),
.bist_checker_errors(bist_checker_errors)
);
assign m_axis_tuser = 4'd0;
wire channel_up_bclk, hard_err_bclk, soft_err_bclk, mac_crit_err_bclk, gt_pll_lock_bclk;
synchronizer #(.INITIAL_VAL(1'b0)) channel_up_sync (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(channel_up), .out(channel_up_bclk));
synchronizer #(.INITIAL_VAL(1'b0)) hard_err_sync (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(hard_err), .out(hard_err_bclk));
synchronizer #(.INITIAL_VAL(1'b0)) soft_err_sync (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(soft_err), .out(soft_err_bclk));
synchronizer #(.INITIAL_VAL(1'b0)) mac_crit_err_sync (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(mac_crit_err), .out(mac_crit_err_bclk));
if (GT_COMMON == 1) begin
synchronizer #(.INITIAL_VAL(1'b0)) gt_pll_lock_sync (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(gt_pll_lock), .out(gt_pll_lock_bclk));
end else begin
assign gt_pll_lock_bclk = 1'b0;
end
reg [19:0] bist_lock_latency;
always @(posedge bus_clk) begin
if (!bist_checker_en && !bist_checker_locked)
bist_lock_latency <= 20'd0;
else if (bist_checker_en && !bist_checker_locked)
bist_lock_latency <= bist_lock_latency + 20'd1;
end
reg mac_crit_err_latch;
always @(posedge bus_clk) begin
if (bus_rst | mac_clear) begin
mac_crit_err_latch <= 1'b0;
end else begin
if (mac_crit_err_bclk)
mac_crit_err_latch <= 1'b1;
end
end
assign phy_status = {30'd0, hard_err, channel_up};
assign mac_status = {
6'h0, //[31:26]
mac_crit_err_latch, //[25]
1'b1, //[24]
gt_pll_lock_bclk, //[23]
qpllrefclklost, //[22]
qplllock, //[21]
qpllreset, //[20]
bist_lock_latency[19:4], //[19:4]
bist_checker_locked, //[3]
soft_err_bclk, //[2]
hard_err_bclk, //[1]
channel_up_bclk //[0]
};
assign link_up = channel_up_bclk;
end else begin
//-----------------------------------------------------------------
// Disabled
//-----------------------------------------------------------------
assign phy_status = 'h0;
assign mac_status = 'h0;
assign link_up = 1'b0;
assign sfpp_tx_disable = 1'b0; // Always on.
assign s_axis_tready = 1'b1;
assign m_axis_tdata = 64'h0;
assign m_axis_tuser = 4'h0;
assign m_axis_tlast = 1'b0;
assign m_axis_tvalid = 1'b0;
assign qpllreset = 1'b0;
assign gt_pll_lock = 1'b0;
assign gt_tx_out_clk_unbuf = 1'b0;
end
endgenerate
wire identify_enable = mac_led_ctl[0];
wire identify_value = mac_led_ctl[1];
//-----------------------------------------------------------------
// Activity detector
//-----------------------------------------------------------------
wire activity_int;
pulse_stretch act_pulse_str_i (
.clk(bus_clk),
.rst(bus_rst | ~link_up),
.pulse((s_axis_tvalid & s_axis_tready) | (m_axis_tvalid & m_axis_tready)),
.pulse_stretched(activity_int)
);
always @ (posedge bus_clk) activity <= identify_enable ? identify_value : activity_int;
endmodule
|