1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/////////////////////////////////////////////////////////////////////
//
// Copyright 2012 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: axi_crossbar
// Description:
// - Control Registers
// - CAM to setup routing between RFNoC blocks
//
/////////////////////////////////////////////////////////////////////
module axi_crossbar
#(
parameter BASE = 0, // settings bus base address
parameter FIFO_WIDTH = 64, // AXI4-STREAM data bus width
parameter DST_WIDTH = 16, // Width of DST field we are routing on.
parameter NUM_INPUTS = 2, // number of input AXI4-STREAM buses
parameter NUM_OUTPUTS = 2 // number of output AXI4-STREAM buses
)
(
input clk,
input reset,
input clear,
input [7:0] local_addr,
// Inputs
input [(FIFO_WIDTH*NUM_INPUTS)-1:0] i_tdata,
input [NUM_INPUTS-1:0] i_tvalid,
input [NUM_INPUTS-1:0] i_tlast,
output [NUM_INPUTS-1:0] i_tready,
input [NUM_INPUTS-1:0] pkt_present,
// Setting Bus
input set_stb,
input [15:0] set_addr,
input [31:0] set_data,
// Output
output [(FIFO_WIDTH*NUM_OUTPUTS)-1:0] o_tdata,
output [NUM_OUTPUTS-1:0] o_tvalid,
output [NUM_OUTPUTS-1:0] o_tlast,
input [NUM_OUTPUTS-1:0] o_tready,
// readback bus
input rb_rd_stb,
input [$clog2(NUM_OUTPUTS)+$clog2(NUM_INPUTS)-1:0] rb_addr,
output reg [31:0] rb_data
);
genvar m,n;
wire [(NUM_INPUTS*NUM_OUTPUTS)-1:0] forward_valid_in;
wire [(NUM_INPUTS*NUM_OUTPUTS)-1:0] forward_ack_in;
wire [(NUM_INPUTS*NUM_OUTPUTS)-1:0] forward_valid_out;
wire [(NUM_INPUTS*NUM_OUTPUTS)-1:0] forward_ack_out;
wire [NUM_INPUTS-1:0] i_tready_slave [0:NUM_OUTPUTS-1];
//
// Instantiate an axi_slave_mux for every slave/output of the Crossbar switch.
// Each axi_slave_mux contains logic to maux and resolve arbitration
// for this particular slave/output.
//
generate
for (m = 0; m < NUM_OUTPUTS; m = m + 1) begin: instantiate_slave_mux
wire [NUM_INPUTS-1:0] i_tready_tmp;
axi_slave_mux
#(
.FIFO_WIDTH(FIFO_WIDTH), // AXI4-STREAM data bus width
.DST_WIDTH(DST_WIDTH), // Width of DST field we are routing on.
.NUM_INPUTS(NUM_INPUTS) // number of input AXI buses
) axi_slave_mux_i
(
.clk(clk),
.reset(reset),
.clear(clear),
// Inputs
.i_tdata(i_tdata),
.i_tvalid(i_tvalid),
.i_tlast(i_tlast),
.i_tready(i_tready_tmp),
// Forwarding flags (One from each Input/Master)
.forward_valid(forward_valid_in[(m+1)*NUM_INPUTS-1:m*NUM_INPUTS]),
.forward_ack(forward_ack_out[(m+1)*NUM_INPUTS-1:m*NUM_INPUTS]),
// Output
.o_tdata(o_tdata[(m*FIFO_WIDTH)+FIFO_WIDTH-1:m*FIFO_WIDTH]),
.o_tvalid(o_tvalid[m]),
.o_tlast(o_tlast[m]),
.o_tready(o_tready[m])
);
if (m==0)
assign i_tready_slave[0] = i_tready_tmp;
else
assign i_tready_slave[m] = i_tready_tmp | i_tready_slave[m-1] ;
end // block: instantiate_slave_mux
endgenerate
assign i_tready = i_tready_slave[NUM_OUTPUTS-1];
//
// Permute the forwarding flag buses
//
generate
for (m = 0; m < NUM_OUTPUTS; m = m + 1) begin: permute_outer
for (n = 0; n < NUM_INPUTS; n = n + 1) begin: permute_inner
assign forward_valid_in[n*NUM_OUTPUTS+m] = forward_valid_out[n+m*NUM_INPUTS];
assign forward_ack_in[n+m*NUM_INPUTS] = forward_ack_out[n*NUM_OUTPUTS+m];
end
end
endgenerate
//
// Instantiate an axi_forwarding_cam for every Input/Master of the Crossbar switch.
// Each contains a TCAM like lookup that allocates an egress port.
//
wire [31:0] rb_data_mux[0:NUM_INPUTS-1];
generate
for (m = 0; m < NUM_INPUTS; m = m + 1) begin: instantiate_cam
axi_forwarding_cam
#(
.BASE(BASE),
.WIDTH(FIFO_WIDTH), // Bit width of FIFO word.
.NUM_OUTPUTS(NUM_OUTPUTS)
) axi_forwarding_cam_i
(
.clk(clk),
.reset(reset),
.clear(clear),
// Monitored FIFO signals
.o_tdata(i_tdata[(m*FIFO_WIDTH)+FIFO_WIDTH-1:m*FIFO_WIDTH]),
.o_tvalid(i_tvalid[m]),
.o_tready(i_tready[m]),
.o_tlast(i_tlast[m]),
.pkt_present(pkt_present[m]),
// Configuration
.local_addr(local_addr),
// Setting Bus
.set_stb(set_stb),
.set_addr(set_addr),
.set_data(set_data),
// Header signals
.forward_valid(forward_valid_out[(m+1)*NUM_OUTPUTS-1:m*NUM_OUTPUTS]),
.forward_ack(forward_ack_in[(m+1)*NUM_OUTPUTS-1:m*NUM_OUTPUTS]),
// Readback bus
.rb_rd_stb(rb_rd_stb && (rb_addr[$clog2(NUM_OUTPUTS)+$clog2(NUM_INPUTS)-1:$clog2(NUM_OUTPUTS)] == m)),
.rb_addr(rb_addr[$clog2(NUM_OUTPUTS)-1:0]),
.rb_data(rb_data_mux[m])
);
end // block: instantiate_fifo_header
endgenerate
// Pipeline readback data to alleviate timing issues
always @(posedge clk) rb_data <= rb_data_mux[rb_addr[$clog2(NUM_OUTPUTS)+$clog2(NUM_INPUTS)-1:$clog2(NUM_OUTPUTS)]];
endmodule // axi_crossbar
|