1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
/*******************************************************************************
* This file is owned and controlled by Xilinx and must be used solely *
* for design, simulation, implementation and creation of design files *
* limited to Xilinx devices or technologies. Use with non-Xilinx *
* devices or technologies is expressly prohibited and immediately *
* terminates your license. *
* *
* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" SOLELY *
* FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR XILINX DEVICES. BY *
* PROVIDING THIS DESIGN, CODE, OR INFORMATION AS ONE POSSIBLE *
* IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD, XILINX IS *
* MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE FROM ANY *
* CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING ANY *
* RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY *
* DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE *
* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR *
* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF *
* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE. *
* *
* Xilinx products are not intended for use in life support appliances, *
* devices, or systems. Use in such applications are expressly *
* prohibited. *
* *
* (c) Copyright 1995-2014 Xilinx, Inc. *
* All rights reserved. *
*******************************************************************************/
/*******************************************************************************
* Generated from core with identifier: xilinx.com:ip:xfft:8.0 *
* *
* The Fast Fourier Transform (FFT) is a computationally efficient *
* algorithm for computing the Discrete Fourier Transform (DFT). The FFT *
* Core can compute 8 to 65536-point forward or inverse complex *
* transforms on up to 12 parallel channels. The input data is a vector *
* of complex values represented as two's-complement numbers 8 to 34 *
* bits wide or single precision floating point numbers 32 bits wide. *
* The phase factors can be 8 to 34 bits wide. All memory is on-chip *
* using either Block RAM or Distributed RAM. Three arithmetic types are *
* available: full-precision unscaled, scaled fixed-point, and *
* block-floating point. Several parameters are run-time configurable: *
* the point size, the choice of forward or inverse transform, and the *
* scaling schedule. Four architectures are available to provide a *
* tradeoff between size and transform time. *
*******************************************************************************/
// Interfaces:
// event_frame_started_intf
// event_tlast_unexpected_intf
// event_tlast_missing_intf
// event_fft_overflow_intf
// event_status_channel_halt_intf
// event_data_in_channel_halt_intf
// event_data_out_channel_halt_intf
// S_AXIS_DATA
// aclk_intf
// aresetn_intf
// aclken_intf
// M_AXIS_STATUS
// M_AXIS_DATA
// S_AXIS_CONFIG
// The following must be inserted into your Verilog file for this
// core to be instantiated. Change the instance name and port connections
// (in parentheses) to your own signal names.
//----------- Begin Cut here for INSTANTIATION Template ---// INST_TAG
simple_fft your_instance_name (
.aclk(aclk), // input aclk
.aresetn(aresetn), // input aresetn
.s_axis_config_tdata(s_axis_config_tdata), // input [23 : 0] s_axis_config_tdata
.s_axis_config_tvalid(s_axis_config_tvalid), // input s_axis_config_tvalid
.s_axis_config_tready(s_axis_config_tready), // output s_axis_config_tready
.s_axis_data_tdata(s_axis_data_tdata), // input [31 : 0] s_axis_data_tdata
.s_axis_data_tvalid(s_axis_data_tvalid), // input s_axis_data_tvalid
.s_axis_data_tready(s_axis_data_tready), // output s_axis_data_tready
.s_axis_data_tlast(s_axis_data_tlast), // input s_axis_data_tlast
.m_axis_data_tdata(m_axis_data_tdata), // output [31 : 0] m_axis_data_tdata
.m_axis_data_tvalid(m_axis_data_tvalid), // output m_axis_data_tvalid
.m_axis_data_tready(m_axis_data_tready), // input m_axis_data_tready
.m_axis_data_tlast(m_axis_data_tlast), // output m_axis_data_tlast
.event_frame_started(event_frame_started), // output event_frame_started
.event_tlast_unexpected(event_tlast_unexpected), // output event_tlast_unexpected
.event_tlast_missing(event_tlast_missing), // output event_tlast_missing
.event_status_channel_halt(event_status_channel_halt), // output event_status_channel_halt
.event_data_in_channel_halt(event_data_in_channel_halt), // output event_data_in_channel_halt
.event_data_out_channel_halt(event_data_out_channel_halt) // output event_data_out_channel_halt
);
// INST_TAG_END ------ End INSTANTIATION Template ---------
// You must compile the wrapper file simple_fft.v when simulating
// the core, simple_fft. When compiling the wrapper file, be sure to
// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Help".
|