1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
//
// Copyright 2011-2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//! The USRP digital down-conversion chain
module ddc_chain
#(
parameter BASE = 0,
parameter DSPNO = 0,
parameter WIDTH = 24,
parameter NEW_HB_DECIM = 0,
parameter DEVICE = "SPARTAN6"
)
(input clk, input rst, input clr,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
// From RX frontend
input [WIDTH-1:0] rx_fe_i,
input [WIDTH-1:0] rx_fe_q,
// To RX control
output [31:0] sample,
input run,
output strobe,
output [31:0] debug
);
localparam cwidth = 25;
localparam zwidth = 24;
wire [31:0] phase_inc;
reg [31:0] phase;
wire [17:0] scale_factor;
wire [cwidth-1:0] to_cordic_i, to_cordic_q;
wire [cwidth-1:0] i_cordic, q_cordic;
reg [WIDTH-1:0] i_cordic_pipe, q_cordic_pipe;
wire [WIDTH-1:0] i_cic, q_cic;
wire strobe_cic, strobe_hb1, strobe_hb2;
wire enable_hb1, enable_hb2;
wire [7:0] cic_decim_rate;
reg [WIDTH-1:0] rx_fe_i_mux, rx_fe_q_mux;
wire realmode;
wire swap_iq;
wire invert_i;
wire invert_q;
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(phase_inc),.changed());
setting_reg #(.my_addr(BASE+1), .width(18)) sr_1
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({enable_hb1, enable_hb2, cic_decim_rate}),.changed());
setting_reg #(.my_addr(BASE+3), .width(4)) sr_3
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({invert_i,invert_q,realmode,swap_iq}),.changed());
// MUX so we can do realmode signals on either input
always @(posedge clk)
if(swap_iq)
begin
rx_fe_i_mux <= invert_i ? ~rx_fe_q : rx_fe_q;
rx_fe_q_mux <= realmode ? {WIDTH{1'b0}} : invert_q ? ~rx_fe_i : rx_fe_i;
end
else
begin
rx_fe_i_mux <= invert_i ? ~rx_fe_i : rx_fe_i;
rx_fe_q_mux <= realmode ? {WIDTH{1'b0}} : invert_q ? ~rx_fe_q : rx_fe_q;
end
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~run)
phase <= 0;
else
phase <= phase + phase_inc;
// CORDIC 24-bit I/O
// (Algorithmic gain through CORDIC => 1.647 * 0.5 = 0.8235)
// (Worst case gain through rotation => SQRT(2) = 1.4142)
// Total worst case gain => 0.8235 * 1.4142 = 1.1646
// So add an extra MSB bit for word growth.
sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_i (.in(rx_fe_i_mux), .out(to_cordic_i));
sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_q (.in(rx_fe_q_mux), .out(to_cordic_q));
cordic_z24 #(.bitwidth(cwidth))
cordic(.clock(clk), .reset(rst), .enable(run),
.xi(to_cordic_i),. yi(to_cordic_q), .zi(phase[31:32-zwidth]),
.xo(i_cordic),.yo(q_cordic),.zo() );
always @(posedge clk) begin
i_cordic_pipe[23:0] <= i_cordic[24:1];
q_cordic_pipe[23:0] <= q_cordic[24:1];
end
// CIC decimator 24 bit I/O
// Applies crude 1/(2^N) right shift gain compensation internally to prevent excesive downstream word growth.
// Output gain is = algo_gain/(POW(2,CEIL(LOG2(algo_gain))) where algo_gain is = cic_decim_rate^4
// Thus output gain is <= 1.0 and no word growth occurs.
cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate),
.strobe_fast(1'b1),.strobe_slow(strobe_cic) );
cic_decim #(.bw(WIDTH))
decim_i (.clock(clk),.reset(rst),.enable(run),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(i_cordic_pipe),.signal_out(i_cic));
cic_decim #(.bw(WIDTH))
decim_q (.clock(clk),.reset(rst),.enable(run),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(q_cordic_pipe),.signal_out(q_cic));
//////////////////////////////////////////////////////////////////////////
//
// Conditional compilation of either:
// 1) New X300 style decimation filters, or
// 2) Traditional N210 style decimation filters.
//
//////////////////////////////////////////////////////////////////////////
generate
if (NEW_HB_DECIM == 1) begin: new_hb
wire reload_go, reload_we1, reload_we2, reload_ld1, reload_ld2;
wire [17:0] coef_din;
setting_reg #(.my_addr(BASE+4), .width(22)) sr_4
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({reload_ld2,reload_we2,reload_ld1,reload_we1,coef_din[17:0]}),.changed(reload_go));
// Halfbands
wire nd1, nd2, nd3;
wire rfd1, rfd2, rfd3;
wire rdy1, rdy2, rdy3;
wire data_valid1, data_valid2, data_valid3;
wire [46:0] i_hb1, q_hb1;
wire [46:0] i_hb2, q_hb2;
localparam HB1_SCALE = 18;
localparam HB2_SCALE = 18;
assign strobe_hb1 = data_valid1;
assign strobe_hb2 = data_valid2;
assign nd1 = strobe_cic;
assign nd2 = strobe_hb1;
// Default Coeffs have gain of ~1.0
hbdec1 hbdec1
(.clk(clk), // input clk
.sclr(rst), // input sclr
.ce(enable_hb1), // input ce
.coef_ld(reload_go & reload_ld1), // input coef_ld
.coef_we(reload_go & reload_we1), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd1), // output rfd
.nd(nd1), // input nd
.din_1(i_cic), // input [23 : 0] din_1
.din_2(q_cic), // input [23 : 0] din_2
.rdy(rdy1), // output rdy
.data_valid(data_valid1), // output data_valid
.dout_1(i_hb1), // output [46 : 0] dout_1
.dout_2(q_hb1)); // output [46 : 0] dout_2
// Default Coeffs have gain of ~1.0
hbdec2 hbdec2
(.clk(clk), // input clk
.sclr(rst), // input sclr
.ce(enable_hb2), // input ce
.coef_ld(reload_go & reload_ld2), // input coef_ld
.coef_we(reload_go & reload_we2), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd2), // output rfd
.nd(nd2), // input nd
.din_1(i_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_1
.din_2(q_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_2
.rdy(rdy2), // output rdy
.data_valid(data_valid2), // output data_valid
.dout_1(i_hb2), // output [46 : 0] dout_1
.dout_2(q_hb2)); // output [46 : 0] dout_2
reg [18:0] i_unscaled, q_unscaled;
reg strobe_unscaled;
always @(posedge clk)
case({enable_hb1,enable_hb2})
// No Halfbands enabled, no decimation.
2'd0 :
begin
strobe_unscaled <= strobe_cic;
i_unscaled <= i_cic[23:5];
q_unscaled <= q_cic[23:5];
end
// ILLEGAL. Only half sample rate half band enabled.
2'd1 :
begin
strobe_unscaled <= strobe_cic;
i_unscaled <= i_cic[23:5];
q_unscaled <= q_cic[23:5];
end
// One Halfband enabled, decimate by 2.
2'd2 :
begin
strobe_unscaled <= strobe_hb1;
i_unscaled <= i_hb1[23+HB1_SCALE:5+HB1_SCALE];
q_unscaled <= q_hb1[23+HB1_SCALE:5+HB1_SCALE];
end
// Both Halfbands enabled, decimate by 4.
2'd3 :
begin
strobe_unscaled <= strobe_hb2;
i_unscaled <= i_hb2[23+HB2_SCALE:5+HB2_SCALE];
q_unscaled <= q_hb2[23+HB2_SCALE:5+HB2_SCALE];
end
endcase // case (hb_rate)
// Need to clip 1 bit here or we loose small signal performance out the truncated LSB's for worst case CIC gain cases.
// NOTE: We can only clip here with CORDIC rotating, CIC in it's highest gain configurations and an input signal thats
// saturated.
wire strobe_unscaled_clip;
wire [17:0] i_unscaled_clip, q_unscaled_clip;
clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_i
(.clk(clk), .in(i_unscaled[18:0]), .strobe_in(strobe_unscaled), .out(i_unscaled_clip[17:0]), .strobe_out(strobe_unscaled_clip));
clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_q
(.clk(clk), .in(q_unscaled[18:0]), .strobe_in(strobe_unscaled), .out(q_unscaled_clip[17:0]), .strobe_out());
// Apply scaling gain to compensate for CORDIC and CIC gain adjustments so that signal swing over network transport has
// optimal dynamic range.
wire [35:0] prod_i, prod_q;
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult_i (.P(prod_i), // Multiplier output bus, width determined by WIDTH_P parameter
.A(i_unscaled_clip), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled_clip), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult_q (.P(prod_q), // Multiplier output bus, width determined by WIDTH_P parameter
.A(q_unscaled_clip), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled_clip), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
reg strobe_scaled;
wire strobe_clip;
wire [32:0] i_clip, q_clip;
always @(posedge clk) strobe_scaled <= strobe_unscaled_clip;
clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_i
(.clk(clk), .in(prod_i[35:0]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip));
clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_q
(.clk(clk), .in(prod_q[35:0]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out());
round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_i
(.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe));
round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_q
(.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out());
end else begin: old_hb // block: new_hb
///////////////////////////////////////////////
//
// Legacy Decimation Filters from USRP2
//
///////////////////////////////////////////////
wire [WIDTH-1:0] i_hb1, q_hb1;
wire [WIDTH-1:0] i_hb2, q_hb2;
// First (small) halfband 24 bit I/O
small_hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) small_hb_i
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run),
.stb_in(strobe_cic),.data_in(i_cic),.stb_out(strobe_hb1),.data_out(i_hb1));
small_hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) small_hb_q
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run),
.stb_in(strobe_cic),.data_in(q_cic),.stb_out(),.data_out(q_hb1));
// Second (large) halfband 24 bit I/O
wire [8:0] cpi_hb = enable_hb1 ? {cic_decim_rate,1'b0} : {1'b0,cic_decim_rate};
hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) hb_i
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb),
.stb_in(strobe_hb1),.data_in(i_hb1),.stb_out(strobe_hb2),.data_out(i_hb2));
hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) hb_q
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb),
.stb_in(strobe_hb1),.data_in(q_hb1),.stb_out(),.data_out(q_hb2));
// Need to clip 1 bit here or we loose small signal performance out the truncated LSB's for worst case CIC gain cases.
wire strobe_unscaled_clip;
wire [17:0] i_unscaled_clip, q_unscaled_clip;
clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_i
(.clk(clk), .in(i_hb2[WIDTH-1:WIDTH-19]), .strobe_in(strobe_hb2), .out(i_unscaled_clip[17:0]), .strobe_out(strobe_unscaled_clip));
clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_q
(.clk(clk), .in(q_hb2[WIDTH-1:WIDTH-19]), .strobe_in(strobe_hb2), .out(q_unscaled_clip[17:0]), .strobe_out());
//scalar operation (gain of 6 bits)
wire [35:0] prod_i, prod_q;
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult_i (.P(prod_i), // Multiplier output bus, width determined by WIDTH_P parameter
.A(i_unscaled_clip),// Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled_clip), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult_q (.P(prod_q), // Multiplier output bus, width determined by WIDTH_P parameter
.A(q_unscaled_clip),// Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled_clip), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
reg strobe_scaled;
wire strobe_clip;
wire [32:0] i_clip, q_clip;
always @(posedge clk) strobe_scaled <= strobe_unscaled_clip;
clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_i
(.clk(clk), .in(prod_i[35:0]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip));
clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_q
(.clk(clk), .in(prod_q[35:0]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out());
round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_i
(.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe));
round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_q
(.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out());
end // block: old_hb
endgenerate
assign debug = {enable_hb1, enable_hb2, run, strobe, strobe_cic, strobe_hb1, strobe_hb2};
endmodule // ddc_chain
|