1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
//
// Copyright 2011-2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//! The USRP digital up-conversion chain
module duc_chain
#(
parameter BASE = 0,
parameter DSPNO = 0,
parameter WIDTH = 24,
parameter NEW_HB_INTERP = 0,
parameter DEVICE = "7SERIES"
)
(input clk, input rst, input clr,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
// To TX frontend
output [WIDTH-1:0] tx_fe_i,
output [WIDTH-1:0] tx_fe_q,
// From TX control
input [31:0] sample,
input run,
output strobe,
output [31:0] debug
);
genvar i;
wire [17:0] scale_factor;
wire [31:0] phase_inc;
reg [31:0] phase;
wire [7:0] interp_rate;
wire [3:0] tx_femux_a, tx_femux_b;
wire enable_hb1, enable_hb2;
wire rate_change;
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(phase_inc),.changed());
setting_reg #(.my_addr(BASE+1), .width(18)) sr_1
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({enable_hb1, enable_hb2, interp_rate}),.changed(rate_change));
// Strobes are all now delayed by 1 cycle for timing reasons
wire strobe_cic_pre, strobe_hb1_pre, strobe_hb2_pre;
reg strobe_cic = 1;
reg strobe_hb1 = 1;
reg strobe_hb2 = 1;
assign strobe = strobe_hb1;
cic_strober #(.WIDTH(8))
cic_strober(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(interp_rate),
.strobe_fast(1'b1),.strobe_slow(strobe_cic_pre) );
cic_strober #(.WIDTH(2))
hb2_strober(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(enable_hb2 ? 2'd2 : 2'd1),
.strobe_fast(strobe_cic_pre),.strobe_slow(strobe_hb2_pre) );
cic_strober #(.WIDTH(2))
hb1_strober(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(enable_hb1 ? 2'd2 : 2'd1),
.strobe_fast(strobe_hb2_pre),.strobe_slow(strobe_hb1_pre) );
always @(posedge clk) strobe_hb1 <= strobe_hb1_pre;
always @(posedge clk) strobe_hb2 <= strobe_hb2_pre;
always @(posedge clk) strobe_cic <= strobe_cic_pre;
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~run)
phase <= 0;
else
phase <= phase + phase_inc;
wire signed [17:0] da, db;
wire signed [35:0] prod_i, prod_q;
wire [17:0] i_interp, q_interp;
wire [17:0] hb1_i, hb1_q, hb2_i, hb2_q;
wire [7:0] cpo = enable_hb2 ? ({interp_rate,1'b0}) : interp_rate;
// Note that max CIC rate is 128, which would give an overflow on cpo if enable_hb2 is true,
// but the default case inside hb_interp handles this
generate
if (NEW_HB_INTERP == 1) begin: new_hb
// First stage of halfband interpolation filters. These run at a max CPO of 2 when CIC is bypassed and HB2 enabled.
hb47_int
#(.WIDTH(18),
.DEVICE(DEVICE))
hb1_i0
(
.clk(clk),
.rst(rst),
.bypass(~enable_hb1),
.stb_in(strobe_hb1),
.data_in({sample[31:16],2'b00}),
.output_rate(cpo),
.stb_out(strobe_hb2),
.data_out(hb1_i)
);
hb47_int
#(.WIDTH(18),
.DEVICE(DEVICE))
hb1_q0
(
.clk(clk),
.rst(rst),
.bypass(~enable_hb1),
.stb_in(strobe_hb1),
.data_in({sample[15:0],2'b00}),
.output_rate(cpo),
.stb_out(strobe_hb2),
.data_out(hb1_q)
);
// Second stage of halfband interpolation filters. These run at a max CPO of 1 when CIC is bypassed.
hb47_int
#(.WIDTH(18),
.DEVICE(DEVICE))
hb2_i0
(
.clk(clk),
.rst(rst),
.bypass(~enable_hb2),
.stb_in(strobe_hb2),
.data_in(hb1_i),
.output_rate(interp_rate),
.stb_out(strobe_cic),
.data_out(hb2_i)
);
hb47_int
#(.WIDTH(18),
.DEVICE(DEVICE))
hb2_q0
(
.clk(clk),
.rst(rst),
.bypass(~enable_hb2),
.stb_in(strobe_hb2),
.data_in(hb1_q),
.output_rate(interp_rate),
.stb_out(strobe_cic),
.data_out(hb2_q)
);
end else begin: old_hb
hb_interp #(.IWIDTH(18),.OWIDTH(18),.ACCWIDTH(WIDTH)) hb_interp_i
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in({sample[31:16], 2'b0}),.stb_out(strobe_hb2),.data_out(hb1_i));
hb_interp #(.IWIDTH(18),.OWIDTH(18),.ACCWIDTH(WIDTH)) hb_interp_q
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in({sample[15:0], 2'b0}),.stb_out(strobe_hb2),.data_out(hb1_q));
small_hb_int #(.WIDTH(18)) small_hb_interp_i
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_i),
.output_rate(interp_rate),.stb_out(strobe_cic),.data_out(hb2_i));
small_hb_int #(.WIDTH(18)) small_hb_interp_q
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_q),
.output_rate(interp_rate),.stb_out(strobe_cic),.data_out(hb2_q));
end // block: old_hb
endgenerate
cic_interp #(.bw(18),.N(4),.log2_of_max_rate(7))
cic_interp_i(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(interp_rate),
.strobe_in(strobe_cic),.strobe_out(1'd1),
.signal_in(hb2_i),.signal_out(i_interp));
cic_interp #(.bw(18),.N(4),.log2_of_max_rate(7))
cic_interp_q(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(interp_rate),
.strobe_in(strobe_cic),.strobe_out(1'd1),
.signal_in(hb2_q),.signal_out(q_interp));
localparam cwidth = WIDTH; // was 18
localparam zwidth = 24; // was 16
wire [cwidth-1:0] da_c, db_c;
//
// Note. No head room has been added to the CORDIC to accomodate gain in excess of the input signals dynamic range.
// The CORDIC has algorithmic gain of 1.647, implementation gain of 0.5 and potential gain associated with rotation of 1.414.
// Thus the CORDIC will overflow when rotating and an input CW with (clipped) effective amplitude of 1.22 is applied.
//
cordic_z24 #(.bitwidth(cwidth))
cordic(.clock(clk), .reset(rst), .enable(run),
.xi({i_interp,{(cwidth-18){1'b0}}}),.yi({q_interp,{(cwidth-18){1'b0}}}),
.zi(phase[31:32-zwidth]),
.xo(da_c),.yo(db_c),.zo() );
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult_i (.P(prod_i), // Multiplier output bus, width determined by WIDTH_P parameter
.A(da_c[cwidth-1:cwidth-18]),// Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(1'b1), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult_q (.P(prod_q), // Multiplier output bus, width determined by WIDTH_P parameter
.A(db_c[cwidth-1:cwidth-18]),// Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(1'b1), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
wire [32:0] i_clip, q_clip;
// Cordic rotation coupled with a saturated input signal can cause overflow
// so we clip here rather than allow a wrap.
clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_i
(.clk(clk), .in(prod_i[35:0]), .strobe_in(1'b1), .out(i_clip), .strobe_out());
clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_q
(.clk(clk), .in(prod_q[35:0]), .strobe_in(1'b1), .out(q_clip), .strobe_out());
assign tx_fe_i = i_clip[32:33-WIDTH];
assign tx_fe_q = q_clip[32:33-WIDTH];
//
// Debug
//
assign debug = {strobe_cic, strobe_hb1, strobe_hb2,run};
endmodule // duc_chain
|