1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
// Write xilinx DSP48E1 primitive for mult-add-clip (signed)
`default_nettype none
module mult_add_clip #(
parameter WIDTH_A=25, // Max 25
parameter BIN_PT_A=24,
parameter WIDTH_B=18, // Max 18
parameter BIN_PT_B=17,
parameter WIDTH_C=43, // Max 43
// Min (47-WIDTH_C-1)+BIN_PT_A+BIN_PT_B,
// Max WIDTH_C-1+BIN_PT_A+BIN_PT_B
parameter BIN_PT_C=42,
parameter WIDTH_O=43, // Max 43-(BIN_PT_A+BIN_PT_B-BIN_PT_O)
parameter BIN_PT_O=42,
parameter LATENCY=2 // Maximum is 4
) (
input wire clk,
input wire reset,
input wire CE, // Ordinarily set to 1'b1
input wire [WIDTH_A-1:0] A,
input wire [WIDTH_B-1:0] B,
input wire [WIDTH_C-1:0] C,
output reg [WIDTH_O-1:0] O
);
// DSP operations:
// O = clip(A * B + C)
//
// Mux settings:
// X,Y (01,01) = M
// Z (011) = C
localparam MREG_IN = (LATENCY >= 1) ? 1 : 0;
localparam CREG_IN = MREG_IN;
localparam PREG_IN = (LATENCY >= 2) ? 1 : 0;
localparam A2REG_IN = (LATENCY >= 3) ? 1 : 0;
localparam A1REG_IN = (LATENCY == 4) ? 1 : 0;
localparam AREG_IN = A1REG_IN + A2REG_IN;
// See OPMODE Control Bits Settings, Table 2-7,2-8,2-9
localparam ZMUX_C = 3'b011;
localparam YMUX_M = 2'b01;
localparam XMUX_M = 2'b01;
localparam [6:0] OPMODE = {ZMUX_C, YMUX_M, XMUX_M};
// A_IN is 25 bits; B_IN is 18 bits. Product M's binary point shifts:
localparam BIN_PT_M = BIN_PT_A+(25-WIDTH_A) + BIN_PT_B+(18-WIDTH_B);
// Calculate shift for C to align binary point to A*B product (M)
// Determine top and bottom indices of C (in C_IN), normalized to M
// Divide by 2**BIN_PT_C then multiply up by 2**BIN_PT_M
localparam C_TOP = WIDTH_C-1 - BIN_PT_C + BIN_PT_M;
localparam C_BOT = 0 - BIN_PT_C + BIN_PT_M;
// Determine number of sign-extended bits above C_TOP
localparam C_EXT = 47 - C_TOP;
// P is a 43-bit fixed point number with bin pt BIN_PT_M
// O is extracted from those bits
// Sign extend if more bits to left of bin pt
localparam O_EXT = ((WIDTH_O-BIN_PT_O) > (43-BIN_PT_M)) ?
(WIDTH_O-BIN_PT_O) - (43-BIN_PT_M) : 0;
// If extending, use highest bit of P, else extract bits based on bin pt
localparam P_TOP = (O_EXT > 0) ? 42 :
(42 + (WIDTH_O-BIN_PT_O) - (43-BIN_PT_M));
// Pad bottom of O if remaining P not enough bits
localparam O_PAD = (WIDTH_O > P_TOP+1) ? (WIDTH_O-P_TOP-1) : 0;
// If padding O, grab lowest bit of P, else determine based on O's width
localparam P_BOT = (O_PAD > 0) ? 0 : (P_TOP+1-WIDTH_O);
//------------------------------------------------
// Normalize C input to A*B product's binary point
//------------------------------------------------
function automatic [47:0] align_c;
input [WIDTH_C-1:0] c;
begin
// Do sign extension
if (C_EXT > 0) begin
align_c[47 -: C_EXT] = {C_EXT{c[WIDTH_C-1]}};
end
if (C_BOT < 0) begin
// Chop off lower bits of C
align_c[C_TOP:0] = c[WIDTH_C-1:(-C_BOT)];
end else begin
// Place C and zero pad if necessary
align_c[C_TOP:C_BOT] = c;
if (C_BOT > 0) begin
align_c[C_BOT-1:0] = {C_BOT{1'b0}};
end
end
end
endfunction
wire [24:0] A_IN = (WIDTH_A < 25) ? { A, {(25-(WIDTH_A)){1'b0}}} : A;
wire [17:0] B_IN = (WIDTH_B < 18) ? { B, {(18-(WIDTH_B)){1'b0}}} : B;
wire [47:0] C_IN;
wire [47:0] P_OUT;
//--------------------------------------------------
// C needs more pipeline registers at higher latency
//--------------------------------------------------
generate if (AREG_IN > 0) begin
reg [AREG_IN*WIDTH_C-1:0] c_r;
if (AREG_IN > 1) begin
always @ (posedge clk)
begin
if (CE) begin
c_r <= {c_r[0 +: (AREG_IN-1)*WIDTH_C], C};
end
end
end else begin
always @ (posedge clk)
begin
if (CE) begin
c_r <= C;
end
end
end
wire [WIDTH_C-1:0] c_pre = c_r[AREG_IN*WIDTH_C-1 -: WIDTH_C];
assign C_IN = align_c(c_pre);
end else begin
assign C_IN = align_c(C);
end endgenerate
//----------------------------------------------
// Track signs for overflow/underflow processing
//----------------------------------------------
reg [LATENCY-1:0] mult_sign;
reg [LATENCY-1:0] c_sign;
wire bin_pt_overflow;
wire adder_overflow;
wire [WIDTH_O-1:0] p_extract;
generate if (LATENCY > 1) begin
always @ (posedge clk)
begin
if (CE) begin
mult_sign <= {mult_sign[0 +: LATENCY-1], A[WIDTH_A-1] ^ B[WIDTH_B-1]};
c_sign <= {c_sign[0 +: LATENCY-1], C[WIDTH_C-1]};
end
end
end else begin
always @ (posedge clk)
begin
if (CE) begin
mult_sign <= A[WIDTH_A-1] ^ B[WIDTH_B-1];
c_sign <= C[WIDTH_C-1];
end
end
end endgenerate
assign adder_overflow = (mult_sign[LATENCY-1] == c_sign[LATENCY-1]) &&
(P_OUT[42] != c_sign[LATENCY-1]);
//----------------------------------------------
// Extract renormalized bits from P_OUT
//----------------------------------------------
generate
if (P_TOP < 42) begin
assign bin_pt_overflow = (|P_OUT[42:P_TOP]) != (&P_OUT[42:P_TOP]);
end else begin
assign bin_pt_overflow = 1'b0;
end
if (O_EXT > 0) begin
assign p_extract[WIDTH_O-1 -: O_EXT] = {O_EXT{P_OUT[42]}};
end
if (O_PAD > 0) begin
assign p_extract[O_PAD-1:0] = {O_PAD{1'b0}};
end
endgenerate
assign p_extract[WIDTH_O-1-O_EXT:O_PAD] = P_OUT[P_TOP:P_BOT];
//----------------------------------
// Clip if underflowed or overflowed
//----------------------------------
always @ (*)
begin
if (bin_pt_overflow || adder_overflow) begin
O <= {c_sign[LATENCY-1], {WIDTH_O-1{!c_sign[LATENCY-1]}}};
end else begin
O <= p_extract;
end
end
DSP48E1 #(
.ACASCREG(AREG_IN),
.AREG(AREG_IN),
.ADREG(0),
.DREG(0),
.BCASCREG(AREG_IN),
.BREG(AREG_IN),
.MREG(MREG_IN),
.CREG(CREG_IN),
.PREG(PREG_IN)
) DSP48_inst (
// Outputs
.ACOUT(),
.BCOUT(),
.CARRYCASCOUT(),
.CARRYOUT(),
.MULTSIGNOUT(),
.OVERFLOW(),
.P(P_OUT),
.PATTERNBDETECT(),
.PATTERNDETECT(),
.PCOUT(),
.UNDERFLOW(),
// Inputs
.A({5'b0,A_IN}),
.ACIN(30'b0),
.ALUMODE(4'b0000),
.B(B_IN),
.BCIN(18'b0),
.C(C_IN),
.CARRYCASCIN(1'b0),
.CARRYIN(1'b0),
.CARRYINSEL(3'b0),
.CEA1(CE),
.CEA2(CE),
.CEAD(1'b0),
.CEALUMODE(1'b1),
.CEB1(CE),
.CEB2(CE),
.CEC(CE),
.CECARRYIN(CE),
.CECTRL(CE),
.CED(1'b0),
.CEINMODE(CE),
.CEM(CE),
.CEP(CE),
.CLK(clk),
.D({25{1'b1}}),
.INMODE(5'b0),
.MULTSIGNIN(1'b0),
.OPMODE(OPMODE),
.PCIN(48'b0),
.RSTA(reset),
.RSTALLCARRYIN(reset),
.RSTALUMODE(reset),
.RSTB(reset),
.RSTC(reset),
.RSTD(reset),
.RSTCTRL(reset),
.RSTINMODE(reset),
.RSTM(reset),
.RSTP(reset)
);
endmodule // mult_add_clip
`default_nettype wire
|