1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
//
// Copyright 2011-2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//////////////////////////////////////////////////////////////////////////////////
//this is a FIFO master interface for the FX3 in "slave fifo" mode.
module gpif2_slave_fifo32
#(
//sizes for fifo64 2 clock cascade fifos
parameter DATA_RX_FIFO_SIZE = 12, //max vita pkt size
parameter DATA_TX_FIFO_SIZE = 12, //max vita pkt size
parameter CTRL_RX_FIFO_SIZE = 5, //small resp packets
parameter CTRL_TX_FIFO_SIZE = 5, //small ctrl packets
//address constants for the endpoints
parameter ADDR_DATA_TX = 2'b00,
parameter ADDR_DATA_RX = 2'b01,
parameter ADDR_CTRL_TX = 2'b10,
parameter ADDR_CTRL_RX = 2'b11
)
(
// GPIF signals
input gpif_clk,
input gpif_rst,
input gpif_enb,
inout [31:0] gpif_d,
input [3:0] gpif_ctl,
output reg sloe,
output reg slrd,
output reg slwr,
output slcs,
output reg pktend,
output reg [1:0] fifoadr,
// FIFO interfaces
input fifo_clk,
input fifo_rst,
// TX Data interface to DSP
output [63:0] tx_tdata, output tx_tlast, output tx_tvalid, input tx_tready,
// RX Data interface to DSP
input [63:0] rx_tdata, input rx_tlast, input rx_tvalid, output rx_tready,
// Incomming control interface
output [63:0] ctrl_tdata, output ctrl_tlast, output ctrl_tvalid, input ctrl_tready,
// Outgoing control interface
input [63:0] resp_tdata, input resp_tlast, input resp_tvalid, output resp_tready,
// Debug Signals
output [31:0] debug
);
reg fifo_nearly_full;
wire ctrl_tx_fifo_nearly_full, data_tx_fifo_nearly_full;
wire ctrl_tx_fifo_has_space, data_tx_fifo_has_space;
assign slcs = 1'b0;
//
// DMA FIFO ready and watermark flags
// These are double registered not for meta stability protection, but to make timing closure easier
// since the first register is locked in the I/O pad.
//
reg fx3_ready, fx3_ready1, fx3_wmark, fx3_wmark1;
always @(posedge gpif_clk) fx3_ready <= gpif_ctl[0];
always @(posedge gpif_clk) fx3_wmark <= gpif_ctl[1];
always @(posedge gpif_clk) fx3_ready1 <= fx3_ready;
always @(posedge gpif_clk) fx3_wmark1 <= fx3_wmark;
//
// GPIF input and output data lines, tristate
//
reg [31:0] gpif_data_in, gpif_data_out;
always @(posedge gpif_clk)
if (~slrd2)
// Update data register only when something useful is read.
// Hold values until we know if they are end of packets for single beat reads.
gpif_data_in <= gpif_d;
assign gpif_d = sloe ? gpif_data_out[31:0] : 32'bz;
// ////////////////////////////////////////////////////////////////////
// GPIF bus master state machine
wire wr_fifo_xfer, wr_fifo_eop;
wire [31:0] wr_fifo_data;
reg read_ready_go, write_ready_go;
reg [3:0] state; //state machine current state
localparam STATE_IDLE = 0;
localparam STATE_THINK = 1;
localparam STATE_READ = 2;
localparam STATE_WRITE = 3;
localparam STATE_WAIT = 4;
localparam STATE_READ_FLUSH = 5;
localparam STATE_WRITE_FLUSH = 6;
localparam STATE_READ_SINGLE = 7;
// General purpose pseudo-state counter.
reg [2:0] idle_cycles;
// Select next address (endpoint) to be processed
reg [1:0] last_addr, next_addr;
wire local_fifo_ready;
// Track size of a wriet burst to look for FX3 corner cases related to 2^n sized bursts.
reg [15:0] transfer_size;
// Read strobe pipeline.
reg slrd1, slrd2, slrd3, slrd4, slrd5;
always @(posedge gpif_clk)
if (gpif_rst) begin
slrd1 <= 1'b1;
slrd2 <= 1'b1;
slrd3 <= 1'b1;
slrd4 <= 1'b1;
slrd5 <= 1'b1;
end else begin
slrd1 <= slrd;
slrd2 <= slrd1;
slrd3 <= slrd2;
slrd4 <= slrd3;
slrd5 <= slrd4;
end
// End of packet pipeline for reads.
reg rx_eop, rx_eop1, rx_eop2;
// This pipeline tracks the end of a CHDR TX packet seperately from the local FIFO becoming full.
// This is because a true packet end causes a tlast assertion to the FIFO, where as a full local FIFO only requires
// the GPIF transaction to be ended before local FIFO overflow occurs.
always @(posedge gpif_clk)
if (gpif_rst) begin
rx_eop1 <= 1;
rx_eop2 <= 1;
end else begin
rx_eop2 <= rx_eop1;
rx_eop1 <= rx_eop;
end
reg first_read;
reg pad = 0;
// //////////////////////////////////////////////////////////////
// FX2 slave FIFO bus master state machine
//
always @(posedge gpif_clk)
if(gpif_rst) begin
state <= STATE_IDLE;
sloe <= 1;
slrd <= 1;
slwr <= 1;
pktend <= 1;
gpif_data_out <= 32'b0;
idle_cycles <= 3'h0;
fifoadr <= 0;
first_read <= 1'b0;
last_addr <= 2'b0;
rx_eop <= 1'b0;
transfer_size <= 1;
pad <= 0;
end
else if (gpif_enb) begin
case (state)
//
// Increment fifoadr to point at next thread, set all strobes to idle,
//
STATE_IDLE: begin
sloe <= 1;
slrd <= 1;
slwr <= 1;
pktend <= 1;
gpif_data_out <= 32'b0;
fifoadr <= next_addr;
state <= STATE_WAIT;
idle_cycles <= 3'h0;
rx_eop <= 1'b0;
first_read <= 1'b0;
end
//
// If the current thread we are pointing at (fifoadr) can not immediately proceed
// then quickly move to the next thread. Once we are pointing at a thread that can proceed locally
// wait for 8 clock cycles to allow fifoadr to propogate to FX3, and corresponding flag state to
// propogate back to FPGA and through resampling flops. At this point transition to STATE_THINK
// to evaluate remote flag.
//
STATE_WAIT: begin
// Current thread can proceed locally
if (local_fifo_ready) begin
idle_cycles <= idle_cycles + 1'b1;
if (idle_cycles == 3'b111) state <= STATE_THINK; // Could shorten this delay, flags now stable for several clocks.
end
// ....move onto next thread.
else begin
idle_cycles <= 3'b0;
//fifoadr <= fifoadr + 2'b1;
fifoadr <= next_addr;
end
end
//
// Flags from FX3 now stable. Make a decision about what type of transaction to start.
//
STATE_THINK: begin
// This is written like a priority encoder but in reality read_ready_go and
// write_ready_go are mutually exclusive by design.
if (fx3_ready1 && fx3_wmark1 && read_ready_go) begin
state <= STATE_READ;
slrd <= 0;
rx_eop <= 1'b0;
first_read <= 1'b1; // Set unconditional read flag to kick off transaction
sloe <= 0; // FX3 drives the data bus.
end else if (fx3_ready1 && ~fx3_wmark1 && read_ready_go) begin
state <= STATE_READ_SINGLE;
slrd <= 0;
sloe <= 0; // FX3 drives the data bus.
end else if (fx3_ready1 && write_ready_go && wr_fifo_eop && (transfer_size[7:0] == 0)) begin // remember that write_ready_go shows 1 cycle old status.
// If an exact multiple of the native USB packet size (1K USB3, 512B USB2) has been transfered
// and TLAST is asserted (but the transfer is less than a full FX3 DMA buffer - this is
// indicated when the watermark will terminate the transfer in this case) then we will pad the packet
// for one more cycle to ensure it does not get stuck in the FX3.
pktend <= 1'b1; // Active low - De-asserted
slwr <= 1'b0; //Active low - Asserted, write to FX3.
transfer_size <= transfer_size + 1; // Increment transfer_size.
gpif_data_out <= wr_fifo_data; // Always latch data from FIFO's into output register
pad <= 1;
end else if ((fx3_ready1 && write_ready_go && wr_fifo_eop) | pad) begin // remember that write_ready_go shows 1 cycle old status.
// Its the end of a CHDR packet and we are not on a FX3 corner case size.
// Go IDLE with pktend and slwr asserted to write the last data.
pktend <= 1'b0; // Active low - Asserted,
state <= STATE_WRITE_FLUSH;
idle_cycles <= 3'd5; // Stay in flush 3 cycles
slwr <= 1'b0; // Active low - Asserted, write to FX3
transfer_size <= 1; // End of packet will release FX3 DMA buffer, reset transfer size count.
gpif_data_out <= wr_fifo_data; // Always latch data from FIFO's into output register
pad <= 0; // Reset pad
end else if (fx3_ready1 && write_ready_go) begin // remember that write_ready_go shows 1 cycle old status.
// There is (an unknown amount of) data ready to send to FX from local FIFO.
state <= STATE_WRITE;
slwr <= 1'b0; // Active low - Write strobe active
gpif_data_out <= wr_fifo_data; // Always latch data from FIFO's into output register
transfer_size <= transfer_size + 1; // Account for current cycles transfer
end
else begin
state <= STATE_IDLE;
end
idle_cycles <= 3'h0;
last_addr <= fifoadr;
end // case: STATE_THINK
// Got here because READY flag asserted but watermark deaaserted...QED there's less than the watermarks
// worth of data to read from FX remaining in this DMA page. Need to do that with single beat reads
// followed by rechecking the READY flag to see if it deassserted indicating that the page emptied.
// Since we have the read data from FX3 earlier than we have a flag to inspect we keep the data in
// gpif_data_in until we know if we are commiting it to the FIFO with or without an asserted TLAST.
//
STATE_READ_SINGLE: begin
if (idle_cycles == 0) begin
// Deassert read strobe after reading single 32bit word
slrd <= 1'b1;
idle_cycles <= idle_cycles + 1;
end else if (idle_cycles == 5) begin
// READY1 flag now reflect effects of last read.
if (!fx3_ready1) begin
state <= STATE_IDLE;
sloe <= 1'b1;
end else begin
// Initiate another READ beat.
state <= STATE_READ_SINGLE;
slrd <= 1'b0;
end
idle_cycles <= 0;
end else begin
// All other idle_cycles counts.
idle_cycles <= idle_cycles + 1;
end
end // case: STATE_READ_SINGLE
// If flag first_read and ~slrd3 have gone deasserted
// (meaning that the watermark deasserted 5 clock cycles ago or local FIFO full) transition to STATE_IDLE.
// If watermark deasserted 2 cycles ago de-assert slrd ...read data is still traveling in the pipeline.
// Whilst ~slrd3 stays asserted keep the first_read flag armed.
// Trigger TLAST only for transfer ended by watermark (Which indicates a true packet end), not local full FIFO.
STATE_READ: begin
if (~fx3_wmark1 | fifo_nearly_full) begin
// Either end of packet or local FIFO full is imminent, start shutting down this read burst.
slrd <= 1'b1; // Active low - Take read strobe inactive
state <= STATE_READ_FLUSH;
end else begin
slrd <= 1'b0; // Active low - Keep read strobe active.
end
if (~fx3_wmark1)
// Put TLAST into pipeline to mark end of packet
rx_eop <= 1'b1;
if (~slrd3)
// Reset first_read flag as slrd assertion progresses down pipeline
first_read <= 1'b0;
end // case: STATE_READ
// SLRD has been deasserted but data continues to flow from FX3 into FPGA until pipeline empties.
STATE_READ_FLUSH: begin
slrd <= 1'b1; // Active low - Keep read strobe inactive.
rx_eop <= 1'b0; // EOP indication can be reset now - Already traveling in the pipeline if it was active.
if (~slrd3)
// Reset first_read flag as slrd assertion progresses down pipeline
first_read <= 1'b0;
if (!first_read && slrd3) begin // Active low signal
// Last data of burst will be written to FIFO next clock edge so transition to IDLE also.
state <= STATE_IDLE;
sloe <= 1'b1; // Active low - Resume parking bus with FPGA driving.
end
end
// Now in potential write burst. Exit this sate immediately if we are only doing a single beat write.
// Can exit this state in several ways:
// At EOP and on a USB packet boundery (1K for USB3, 512B for USB2) must pad packet for 1 clock cycle in
// addition to simply asserting pktend.
// Otherwise at EOP just send a short packet.
// If local FIFO goes empty then we terminatethe burst without asserting pktend.
STATE_WRITE: begin
if (wr_fifo_eop && wr_fifo_xfer && (transfer_size[7:0] == 0)) begin
// If an exact multiple of the native USB packet size (1K USB3, 512B USB2) has been transfered
// and TLAST is asserted (but the transfer is less than a full FX3 DMA buffer - this is
// indicated when the watermark will terminate the transfer in this case) then we will pad the packet
// for one more cycle to ensure it does not get stuck in the FX3.
pktend <= 1'b1; // Active low - De-asserted,
slwr <= 1'b0; // Active low - Asserted, write to FX3
transfer_size <= transfer_size + 1; // Increment transfer_size.
pad <= 1;
end else if ((wr_fifo_eop && wr_fifo_xfer) | pad) begin
// Its the end of a CHDR packet and we are not on a FX3 corner case size.
// Go IDLE with pktend and slwr asserted to write the last data.
pktend <= 1'b0; // Active low - Asserted,
state <= STATE_WRITE_FLUSH;
idle_cycles <= 3'd5; // Stay in flush 3 cycles
slwr <= 1'b0; // Active low - Asserted, write to FX3
transfer_size <= 1; // End of packet will release FX3 DMA buffer, reset transfer size count.
pad <= 0; //Reset pad
end else if (wr_fifo_xfer) begin
// Regular write beat as part of a burst.
pktend <= 1'b1; // Active low - De-asserted,
slwr <= 1'b0; // Active low - Asserted, write to FX3
transfer_size <= transfer_size + 1; // Account for current cycles transfer
end else begin // Implicit if (~wr_fifo_xfer)
// This was either a single beat write (watermark was never asserted)
// or the water mark just deasserted or we ran out of local data to send.
// slwr will be deasserted and we transition to the flush state.
state <= STATE_WRITE_FLUSH;
idle_cycles <= 3'd6; // Stay in flush 2 cycles.
pktend <= 1'b1; // Active low - De-asserted,
slwr <= 1'b1; // Active low - Deasserted, don't write to FX3
end
gpif_data_out <= wr_fifo_data; // Always latch data from FIFO's into output register
end // case: STATE_WRITE
// Some FX3 timing diagrams seem to imply address should be held stable after transaction
STATE_WRITE_FLUSH: begin
slrd <= 1;
slwr <= 1;
pktend <= 1;
gpif_data_out <= 32'b0;
idle_cycles <= idle_cycles + 1'b1;
if (idle_cycles == 3'b111) begin
state <= STATE_IDLE;
end
end
default: state <= STATE_IDLE;
endcase
end
// ///////////////////////////////////////////////////////////////////
// fifo signal assignments and enables
//output from fifos - ready to xfer
wire data_tx_tready, ctrl_tx_tready;
wire ctrl_rx_tvalid, data_rx_tvalid;
//Priority encoding for the the next address to service:
//The next address to service is based on the readiness
//of the internal fifos and last serviced fairness metric.
/* -----\/----- EXCLUDED -----\/-----
always @(posedge gpif_clk) next_addr <=
((ctrl_rx_tvalid && (last_addr != ADDR_CTRL_RX))? ADDR_CTRL_RX :
((ctrl_tx_fifo_has_space && (last_addr != ADDR_CTRL_TX))? ADDR_CTRL_TX :
((data_rx_tvalid && (last_addr != ADDR_DATA_RX))? ADDR_DATA_RX :
((data_tx_fifo_has_space && (last_addr != ADDR_DATA_TX))? ADDR_DATA_TX :
(fifoadr + 2'b1)
))));
-----/\----- EXCLUDED -----/\----- */
//always @(posedge gpif_clk) next_addr <= (fifoadr + 2'b1);
// Sequence addresses 0->2->1->3->0......
always @(posedge gpif_clk) {next_addr[0],next_addr[1]} <= ({fifoadr[0],fifoadr[1]} + 2'b1);
//Help the FPGA search to only look for addrs that the FPGA is ready for
assign local_fifo_ready =
(ctrl_rx_tvalid && (fifoadr == ADDR_CTRL_RX)) ||
(ctrl_tx_fifo_has_space && (fifoadr == ADDR_CTRL_TX)) ||
(data_rx_tvalid && (fifoadr == ADDR_DATA_RX)) ||
(data_tx_fifo_has_space && (fifoadr == ADDR_DATA_TX));
// Local TX FIFO imminantly about to fill.
always @(posedge gpif_clk) fifo_nearly_full <=
(ctrl_tx_fifo_nearly_full && (fifoadr == ADDR_CTRL_TX)) ||
(data_tx_fifo_nearly_full && (fifoadr == ADDR_DATA_TX));
// There is enough space in local FIFO to RX an entire CHDR packet (sized for channel type)
always @(posedge gpif_clk) read_ready_go <=
(ctrl_tx_fifo_has_space && (fifoadr == ADDR_CTRL_TX)) ||
(data_tx_fifo_has_space && (fifoadr == ADDR_DATA_TX));
// The is data waiting to be sent to FX3 in local FIFO's
always @(posedge gpif_clk) write_ready_go <=
(ctrl_rx_tvalid && (fifoadr == ADDR_CTRL_RX)) ||
(data_rx_tvalid && (fifoadr == ADDR_DATA_RX));
//fifo xfer enable
wire data_rx_tready = (
((state == STATE_WRITE) && fx3_wmark1 && ~pad) || // Sustain burst
((state == STATE_THINK) && fx3_ready1) // First beat
) && (fifoadr == ADDR_DATA_RX) ;
wire ctrl_rx_tready = (
((state == STATE_WRITE) && fx3_wmark1) || // Sustain burst
((state == STATE_THINK) && fx3_ready1) // First beat
) && (fifoadr == ADDR_CTRL_RX) ;
// Burst reads tap the read strobe pipeline at stage3, single beat reads at stage5.
wire data_tx_tvalid = (
(((state == STATE_READ) || (state == STATE_READ_FLUSH)) && ~slrd3) |
((state == STATE_READ_SINGLE) && ~slrd5)
) && (fifoadr == ADDR_DATA_TX);
wire ctrl_tx_tvalid = (
(((state == STATE_READ) || (state == STATE_READ_FLUSH)) && ~slrd3) |
((state == STATE_READ_SINGLE) && ~slrd5)
) && (fifoadr == ADDR_CTRL_TX);
// The position of RX TLAST is known well in advance for bursts by monitoring the watermark. However for
// single beat reads it can only be deduced after a read that causes the ready flag to go inactive.
wire data_ctrl_tx_tlast = ((state == STATE_READ_FLUSH) && rx_eop2) || ((state == STATE_READ_SINGLE) && ~fx3_ready1);
//outputs from rx fifo paths
wire ctrl_rx_tlast, data_rx_tlast;
wire [31:0] ctrl_rx_tdata, data_rx_tdata;
// There will be a RX FIFO transaction this cycle
assign wr_fifo_xfer = (fifoadr == ADDR_CTRL_RX)? (ctrl_rx_tvalid && ctrl_rx_tready) : (data_rx_tvalid && data_rx_tready);
// The RX FIFO transaction this cycle has TLAST set
assign wr_fifo_eop = (fifoadr == ADDR_CTRL_RX)? ctrl_rx_tlast : data_rx_tlast;
// Route data from addressed RX FIFO towards FX3
assign wr_fifo_data = (fifoadr == ADDR_CTRL_RX)? ctrl_rx_tdata : data_rx_tdata;
wire ctrl_bus_error, tx_bus_error;
// ////////////////////////////////////////////////////////////////////
// TX Data Path
wire [31:0] debug_data_fifo;
gpif2_to_fifo64 #(.FIFO_SIZE(DATA_TX_FIFO_SIZE)) gpif2_to_fifo64_tx(
.gpif_clk(gpif_clk), .gpif_rst(gpif_rst),
.i_tdata(gpif_data_in), .i_tlast(data_ctrl_tx_tlast), .i_tvalid(data_tx_tvalid), .i_tready(data_tx_tready), // IJB. NOTE data_tx_tready currently unused.
.fifo_clk(fifo_clk), .fifo_rst(fifo_rst),
.fifo_nearly_full(data_tx_fifo_nearly_full), .fifo_has_space(data_tx_fifo_has_space),
.o_tdata(tx_tdata), .o_tlast(tx_tlast), .o_tvalid(tx_tvalid), .o_tready(tx_tready),
.bus_error(tx_bus_error), .debug(debug_data_fifo)
);
// ////////////////////////////////////////////
// RX Data Path
fifo64_to_gpif2 #(.FIFO_SIZE(DATA_RX_FIFO_SIZE)) fifo64_to_gpif2_rx(
.fifo_clk(fifo_clk), .fifo_rst(fifo_rst),
.i_tdata(rx_tdata), .i_tlast(rx_tlast), .i_tvalid(rx_tvalid), .i_tready(rx_tready),
.gpif_clk(gpif_clk), .gpif_rst(gpif_rst),
.o_tdata(data_rx_tdata), .o_tlast(data_rx_tlast), .o_tvalid(data_rx_tvalid), .o_tready(data_rx_tready)
);
// ////////////////////////////////////////////////////////////////////
// CTRL path
wire [31:0] debug_ctrl_fifo;
gpif2_to_fifo64 #(.FIFO_SIZE(CTRL_TX_FIFO_SIZE)) gpif2_to_fifo64_ctrl(
.gpif_clk(gpif_clk), .gpif_rst(gpif_rst),
.i_tdata(gpif_data_in), .i_tlast(data_ctrl_tx_tlast), .i_tvalid(ctrl_tx_tvalid), .i_tready(ctrl_tx_tready), // IJB. NOTE data_tx_tready currently unused.
.fifo_clk(fifo_clk), .fifo_rst(fifo_rst),
.fifo_nearly_full(ctrl_tx_fifo_nearly_full), .fifo_has_space(ctrl_tx_fifo_has_space),
.o_tdata(ctrl_tdata), .o_tlast(ctrl_tlast), .o_tvalid(ctrl_tvalid), .o_tready(ctrl_tready),
.bus_error(ctrl_bus_error), .debug(debug_ctrl_fifo)
);
// ////////////////////////////////////////////////////////////////////
// RESP path
fifo64_to_gpif2 #(.FIFO_SIZE(CTRL_RX_FIFO_SIZE)) fifo64_to_gpif2_resp(
.fifo_clk(fifo_clk), .fifo_rst(fifo_rst),
.i_tdata(resp_tdata), .i_tlast(resp_tlast), .i_tvalid(resp_tvalid), .i_tready(resp_tready),
.gpif_clk(gpif_clk), .gpif_rst(gpif_rst),
.o_tdata(ctrl_rx_tdata), .o_tlast(ctrl_rx_tlast), .o_tvalid(ctrl_rx_tvalid), .o_tready(ctrl_rx_tready)
);
// ////////////////////////////////////////////
// DEBUG
/* -----\/----- EXCLUDED -----\/-----
wire [35:0] CONTROL0;
reg wr_fifo_eop_debug;
reg read_ready_go_debug;
reg fifo_nearly_full_debug;
reg local_fifo_ready_debug;
reg slwr_debug;
reg slrd_debug;
reg sloe_debug;
reg pktend_debug;
reg [1:0] fifoadr_debug;
reg ep_wmark1_debug;
reg ep_ready1_debug;
reg [3:0] state_debug;
reg wr_fifo_xfer_debug;
always @(posedge gpif_clk) begin
wr_fifo_eop_debug <= wr_fifo_eop;
read_ready_go_debug <= read_ready_go;
fifo_nearly_full_debug <= fifo_nearly_full;
local_fifo_ready_debug <= local_fifo_ready;
wr_fifo_xfer_debug <= wr_fifo_xfer;
slwr_debug <= slwr;
slrd_debug <= slrd;
sloe_debug <= sloe;
pktend_debug <= pktend;
fifoadr_debug[1:0] <= fifoadr;
ep_wmark1_debug <= fx3_wmark1;
ep_ready1_debug <= fx3_ready1;
state_debug[3:0] <= state;
end
chipscope_ila_32 chipscope_ila_32_0 (
.CONTROL(CONTROL0), // INOUT BUS [35:0]
.CLK(gpif_clk), // IN
.TRIG0({
debug_data_fifo[5:0],
debug_ctrl_fifo[5:0],
wr_fifo_eop_debug,
read_ready_go_debug,
fifo_nearly_full_debug,
local_fifo_ready_debug,
wr_fifo_xfer_debug,
slwr_debug,
slrd_debug,
sloe_debug,
pktend_debug,
fifoadr_debug[1:0],
ep_wmark1_debug,
ep_ready1_debug,
state_debug[3:0]
}) // IN BUS [31:0]
);
chipscope_icon chipscope_icon_i0
(
.CONTROL0(CONTROL0) // INOUT BUS [35:0]
);
-----/\----- EXCLUDED -----/\----- */
endmodule // gpif2_slave_fifo32
|