File: cat_io_lvds_dual_mode.v

package info (click to toggle)
uhd 3.15.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 202,252 kB
  • sloc: cpp: 182,756; ansic: 94,109; vhdl: 53,420; python: 45,849; xml: 12,956; tcl: 7,046; makefile: 2,248; sh: 1,741; pascal: 230; javascript: 120; csh: 94; asm: 20; perl: 11
file content (397 lines) | stat: -rw-r--r-- 12,166 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
//
// Copyright 2016 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: cat_io_lvds_dual_mode
//
// Description:
//
// This is an LVDS interface for the AD9361 (Catalina). It uses the cat_io_lvds 
// module to implement the interface, but supports both 1R1T and 2R2T timing 
// modes while using full LVDS bandwidth. That is, it can support 1R1T at twice 
// the sample rate of 2R2T.
//
// This is controlled by the a_mimo control signal. When MIMO = 0 (1R1T mode), 
// the radio_clk frequency equals that of rx_clk/2 and the data is output to 
// both radio channels. If MIMO = 1 (2R2T), the frequency of radio_clk equals 
// rx_clk/4 and the data stream is split between channel 0 and channel 1. This is used 
// for 2R2T mode.
//

module cat_io_lvds_dual_mode #(
  parameter INVERT_FRAME_RX    = 0,
  parameter INVERT_DATA_RX     = 6'b00_0000,
  parameter INVERT_FRAME_TX    = 0,
  parameter INVERT_DATA_TX     = 6'b00_0000,
  parameter USE_CLOCK_IDELAY   = 1,
  parameter USE_DATA_IDELAY    = 1,
  parameter DATA_IDELAY_MODE   = "FIXED",
  parameter CLOCK_IDELAY_MODE  = "FIXED",
  parameter INPUT_CLOCK_DELAY  = 16,
  parameter INPUT_DATA_DELAY   = 0,
  parameter USE_CLOCK_ODELAY   = 0,
  parameter USE_DATA_ODELAY    = 0,
  parameter DATA_ODELAY_MODE   = "FIXED",
  parameter CLOCK_ODELAY_MODE  = "FIXED",
  parameter OUTPUT_CLOCK_DELAY = 16,
  parameter OUTPUT_DATA_DELAY  = 0
) (
  input rst,
  input clk200,

  // Data and frame timing (asynchronous, glitch free)
  input a_mimo,     // MIMO vs. SISO mode
  input a_tx_ch,    // Which channel to transmit when MIMO=0

  // Delay Control Interface
  input       ctrl_clk,
  input [4:0] ctrl_in_data_delay,
  input [4:0] ctrl_in_clk_delay,
  input       ctrl_ld_in_data_delay,
  input       ctrl_ld_in_clk_delay,
  input [4:0] ctrl_out_data_delay,
  input [4:0] ctrl_out_clk_delay,  
  input       ctrl_ld_out_data_delay,
  input       ctrl_ld_out_clk_delay,

  // Baseband sample interface
  output radio_clk,
  //
  output reg        rx_aligned,
  output reg [11:0] rx_i0,
  output reg [11:0] rx_q0,
  output reg [11:0] rx_i1,
  output reg [11:0] rx_q1,
  //
  input  [11:0] tx_i0,
  input  [11:0] tx_q0,
  input  [11:0] tx_i1,
  input  [11:0] tx_q1,

  // Catalina LVDS interface
  input        rx_clk_p,
  input        rx_clk_n,
  input        rx_frame_p,
  input        rx_frame_n,
  input  [5:0] rx_d_p,
  input  [5:0] rx_d_n,
  //
  output       tx_clk_p,
  output       tx_clk_n,
  output       tx_frame_p,
  output       tx_frame_n,
  output [5:0] tx_d_p,
  output [5:0] tx_d_n
);
  
  wire radio_clk_1x;    // rx_clk_p divided by 4
  wire radio_clk_2x;    // rx_clk_p divided by 2


  //---------------------------------------------------------------------------
  // Mode Selection
  //---------------------------------------------------------------------------

  wire r_mimo;
  wire r_tx_ch;

  // Double synchronize the MIMO signal
  synchronizer mimo_sync (
    .clk(radio_clk_1x),
    .rst(1'b0),
    .in(a_mimo),
    .out(r_mimo));

  // Double synchronize the Tx channel signal
  synchronizer tx_ch_sync (
    .clk(radio_clk_1x),
    .rst(1'b0),
    .in(a_tx_ch),
    .out(r_tx_ch));


  //---------------------------------------------------------------------------
  // Clock Mux
  //---------------------------------------------------------------------------

  // Use radio_clk_1x when MIMO = 1, radio_clk_2x when MIMO = 0
  BUFGCTRL BUFGCTRL_radio_clk (
    .I0      (radio_clk_1x),
    .I1      (radio_clk_2x),
    .S0      (r_mimo),
    .S1      (~r_mimo),
    .CE0     (1),
    .CE1     (1),
    .O       (radio_clk),
    .IGNORE0 (0),
    .IGNORE1 (0)
  );


  //---------------------------------------------------------------------------
  // Generate Alignment Strobes
  //---------------------------------------------------------------------------
  //
  // The LVDS input logic generates the following two clocks:
  //
  //   radio_clk_1x   |‾‾‾‾‾|_____|‾‾‾‾‾|_____|‾‾‾‾‾|_____|‾‾‾‾‾|_____|‾‾‾‾‾|
  //
  //   radio_clk_2x   |‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|
  //
  //
  // Using simple logic, we create the following two signals from these clocks:
  //
  //   align_1x       |‾‾‾‾‾‾‾‾‾‾‾|___________|‾‾‾‾‾‾‾‾‾‾‾|___________|‾‾‾‾‾‾
  //
  //   align_2x       ______|‾‾‾‾‾‾‾‾‾‾‾|___________|‾‾‾‾‾‾‾‾‾‾‾|___________|
  //
  // These two alignment signals allow us to tell where in the frame period we 
  // are so that we can deserialize in the correct order.
  //
  //---------------------------------------------------------------------------

  reg align_1x = 0;
  reg align_2x = 0;

  always @(posedge radio_clk_1x)
  begin
    align_1x <= ~align_1x;
  end

  always @(posedge radio_clk_2x)
  begin
    // Align data capture to 1x clock so that we stay in sync with data. 
    // Otherwise, the data might be serialized in the wrong order.
    align_2x <= align_1x;
  end


  //---------------------------------------------------------------------------
  // Rx MIMO/SISO Serialization
  //---------------------------------------------------------------------------
  //
  // This block of code takes the dual outputs when in SISO mode and serializes 
  // them. Because we use the 2x clock when in SISO mode, this allows us to 
  // double the data rate when using a single channel.
  //
  //---------------------------------------------------------------------------

  reg [11:0] rx_i0_ser;
  reg [11:0] rx_q0_ser;
  reg [11:0] rx_i1_ser;
  reg [11:0] rx_q1_ser;

  reg [11:0] rx_i0_out;
  reg [11:0] rx_q0_out;
  reg [11:0] rx_i1_out;
  reg [11:0] rx_q1_out;

  always @(posedge radio_clk_2x)
  begin
    rx_aligned <= rx_aligned_t;

    if (align_1x ^ align_2x) begin
      // This clock cycle corresponds to the first 1x cycle in which two 
      // samples are output, so grab data from port 0.
      rx_i0_ser <= rx_i0_t;
      rx_q0_ser <= rx_q0_t;
      rx_i1_ser <= rx_i0_t;
      rx_q1_ser <= rx_q0_t;
    end else begin
      // This radio_clk_2x cycle corresponds to the second 1x cycle in which 
      // two samples are output, so grab data from port 1.
      rx_i0_ser <= rx_i1_t;
      rx_q0_ser <= rx_q1_t;
      rx_i1_ser <= rx_i1_t;
      rx_q1_ser <= rx_q1_t;
    end

    // Select the correct Rx output based on MIMO setting
    if (r_mimo) begin
      rx_i0_out <= rx_i0_t;
      rx_q0_out <= rx_q0_t;
      rx_i1_out <= rx_i1_t;
      rx_q1_out <= rx_q1_t;
    end else begin
      rx_i0_out <= rx_i0_ser;
      rx_q0_out <= rx_q0_ser;
      rx_i1_out <= rx_i1_ser;
      rx_q1_out <= rx_q1_ser;
    end
  end


  //---------------------------------------------------------------------------
  // Synchronize Rx to radio_clk Domain
  //---------------------------------------------------------------------------
  //
  //  This crosses the radio data from the radio_clk_1x domain to the radio_clk 
  //  domain. We use the falling edge of radio_clk to allow for the BUFG 
  //  insertion delay.
  //
  //---------------------------------------------------------------------------

  reg [11:0] rx_i0_fall;
  reg [11:0] rx_q0_fall;
  reg [11:0] rx_i1_fall;
  reg [11:0] rx_q1_fall;
   
  always @(negedge radio_clk)
  begin
    rx_i0_fall <= rx_i0_out;
    rx_q0_fall <= rx_q0_out;
    rx_i1_fall <= rx_i1_out;
    rx_q1_fall <= rx_q1_out;
  end

  // Re-clock data on the rising edge to present the whole period to external IP
  always @(posedge radio_clk)
  begin
    rx_i0 <= rx_i0_fall;
    rx_q0 <= rx_q0_fall;
    rx_i1 <= rx_i1_fall;
    rx_q1 <= rx_q1_fall;
  end


  //---------------------------------------------------------------------------
  // Tx MIMO/SISO Deserialization
  //---------------------------------------------------------------------------
  //
  // This block of code takes the serialized output from the radios and 
  // parallelizes it onto the two radio ports of the Catalina interface. It 
  // also takes the radio data, output on the radio_clk domain, and crosses it 
  // to the radio_clk_1x domain.
  //
  //---------------------------------------------------------------------------

  reg [11:0] tx_i0_del;
  reg [11:0] tx_q0_del;
  reg [11:0] tx_i1_del;
  reg [11:0] tx_q1_del;

  always @(posedge radio_clk_2x)
  begin
    // Capture copy of the data delayed by one radio_clk_2c cycle.
    tx_i0_del <= tx_i0;
    tx_q0_del <= tx_q0;
    tx_i1_del <= tx_i1;
    tx_q1_del <= tx_q1;
  end

  always @(posedge radio_clk_1x)
  begin
    if (r_mimo) begin
      // In MIMO mode, radio_clk is radio_clk_1x, so we just capture the same 
      // data for each radio_clk_1x cycle.
      tx_i0_t <= tx_i0;
      tx_q0_t <= tx_q0;
      tx_i1_t <= tx_i1;
      tx_q1_t <= tx_q1;
    end else begin
      // In SISO mode, data is updated every radio_clk_2x cycle, so we output 
      // the data from the previous radio_clk_2x cycle onto channel 0 and the 
      // data from the current radio_clk_2x cycle onto channel 1. This puts the 
      // data in the correct order when in 1R1T mode.
      if (r_tx_ch == 0) begin
        tx_i0_t <= tx_i0_del;
        tx_q0_t <= tx_q0_del;
        tx_i1_t <= tx_i0;
        tx_q1_t <= tx_q0;
      end else begin
        tx_i0_t <= tx_i1_del;
        tx_q0_t <= tx_q1_del;
        tx_i1_t <= tx_i1;
        tx_q1_t <= tx_q1;
      end
    end
  end


  //---------------------------------------------------------------------------
  // Catalina TX/RX Interface
  //---------------------------------------------------------------------------

  wire        rx_aligned_t;
  wire [11:0] rx_i0_t;
  wire [11:0] rx_q0_t;
  wire [11:0] rx_i1_t;
  wire [11:0] rx_q1_t;

  reg [11:0] tx_i0_t;
  reg [11:0] tx_q0_t;
  reg [11:0] tx_i1_t;
  reg [11:0] tx_q1_t;
  
  cat_io_lvds #(
    .INVERT_FRAME_RX    (0),
    .INVERT_DATA_RX     (6'b00_0000),
    .INVERT_FRAME_TX    (0),
    .INVERT_DATA_TX     (6'b00_0000),
    .USE_CLOCK_IDELAY   (USE_CLOCK_IDELAY),
    .USE_DATA_IDELAY    (USE_DATA_IDELAY),
    .DATA_IDELAY_MODE   (DATA_IDELAY_MODE),
    .CLOCK_IDELAY_MODE  (CLOCK_IDELAY_MODE),
    .INPUT_CLOCK_DELAY  (INPUT_CLOCK_DELAY),
    .INPUT_DATA_DELAY   (INPUT_DATA_DELAY),
    .USE_CLOCK_ODELAY   (USE_CLOCK_ODELAY),
    .USE_DATA_ODELAY    (USE_DATA_ODELAY),
    .DATA_ODELAY_MODE   (DATA_ODELAY_MODE),
    .CLOCK_ODELAY_MODE  (CLOCK_ODELAY_MODE),
    .OUTPUT_CLOCK_DELAY (OUTPUT_CLOCK_DELAY),
    .OUTPUT_DATA_DELAY  (OUTPUT_DATA_DELAY),
    .USE_BUFG           (0)
  ) cat_io_lvds_i0 (
    .rst    (rst),
    .clk200 (clk200),
    
    // Data and frame timing
    .mimo         (1),       // Set to 1 to always return all samples
    .frame_sample (~r_mimo), // Frame timing corresponds to SISO/MIMO setting
    
    // Delay control interface
    .ctrl_clk               (ctrl_clk),
    //
    .ctrl_in_data_delay     (ctrl_in_data_delay),
    .ctrl_in_clk_delay      (ctrl_in_clk_delay),
    .ctrl_ld_in_data_delay  (ctrl_ld_in_data_delay),
    .ctrl_ld_in_clk_delay   (ctrl_ld_in_clk_delay),
    //
    .ctrl_out_data_delay    (ctrl_out_data_delay),
    .ctrl_out_clk_delay     (ctrl_out_clk_delay),
    .ctrl_ld_out_data_delay (ctrl_ld_out_data_delay),
    .ctrl_ld_out_clk_delay  (ctrl_ld_out_clk_delay),
    
    // Baseband sample interface
    .radio_clk    (radio_clk_1x),
    .radio_clk_2x (radio_clk_2x),
    .rx_aligned   (rx_aligned_t),
    //
    .rx_i0        (rx_i0_t),
    .rx_q0        (rx_q0_t),
    .rx_i1        (rx_i1_t),
    .rx_q1        (rx_q1_t),
    //
    .tx_i0        (tx_i0_t),
    .tx_q0        (tx_q0_t),
    .tx_i1        (tx_i1_t),
    .tx_q1        (tx_q1_t),
    
    // Catalina interface
    .rx_clk_p   (rx_clk_p),
    .rx_clk_n   (rx_clk_n),
    .rx_frame_p (rx_frame_p),
    .rx_frame_n (rx_frame_n),
    .rx_d_p     (rx_d_p),
    .rx_d_n     (rx_d_n),
    //
    .tx_clk_p   (tx_clk_p),
    .tx_clk_n   (tx_clk_n),
    .tx_frame_p (tx_frame_p),
    .tx_frame_n (tx_frame_n),
    .tx_d_p     (tx_d_p),
    .tx_d_n     (tx_d_n)
  );

endmodule  // cat_io_lvds_dual_mode