1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
//
// Copyright 2016 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: cat_io_lvds_dual_mode
//
// Description:
//
// This is an LVDS interface for the AD9361 (Catalina). It uses the cat_io_lvds
// module to implement the interface, but supports both 1R1T and 2R2T timing
// modes while using full LVDS bandwidth. That is, it can support 1R1T at twice
// the sample rate of 2R2T.
//
// This is controlled by the a_mimo control signal. When MIMO = 0 (1R1T mode),
// the radio_clk frequency equals that of rx_clk/2 and the data is output to
// both radio channels. If MIMO = 1 (2R2T), the frequency of radio_clk equals
// rx_clk/4 and the data stream is split between channel 0 and channel 1. This is used
// for 2R2T mode.
//
module cat_io_lvds_dual_mode #(
parameter INVERT_FRAME_RX = 0,
parameter INVERT_DATA_RX = 6'b00_0000,
parameter INVERT_FRAME_TX = 0,
parameter INVERT_DATA_TX = 6'b00_0000,
parameter USE_CLOCK_IDELAY = 1,
parameter USE_DATA_IDELAY = 1,
parameter DATA_IDELAY_MODE = "FIXED",
parameter CLOCK_IDELAY_MODE = "FIXED",
parameter INPUT_CLOCK_DELAY = 16,
parameter INPUT_DATA_DELAY = 0,
parameter USE_CLOCK_ODELAY = 0,
parameter USE_DATA_ODELAY = 0,
parameter DATA_ODELAY_MODE = "FIXED",
parameter CLOCK_ODELAY_MODE = "FIXED",
parameter OUTPUT_CLOCK_DELAY = 16,
parameter OUTPUT_DATA_DELAY = 0
) (
input rst,
input clk200,
// Data and frame timing (asynchronous, glitch free)
input a_mimo, // MIMO vs. SISO mode
input a_tx_ch, // Which channel to transmit when MIMO=0
// Delay Control Interface
input ctrl_clk,
input [4:0] ctrl_in_data_delay,
input [4:0] ctrl_in_clk_delay,
input ctrl_ld_in_data_delay,
input ctrl_ld_in_clk_delay,
input [4:0] ctrl_out_data_delay,
input [4:0] ctrl_out_clk_delay,
input ctrl_ld_out_data_delay,
input ctrl_ld_out_clk_delay,
// Baseband sample interface
output radio_clk,
//
output reg rx_aligned,
output reg [11:0] rx_i0,
output reg [11:0] rx_q0,
output reg [11:0] rx_i1,
output reg [11:0] rx_q1,
//
input [11:0] tx_i0,
input [11:0] tx_q0,
input [11:0] tx_i1,
input [11:0] tx_q1,
// Catalina LVDS interface
input rx_clk_p,
input rx_clk_n,
input rx_frame_p,
input rx_frame_n,
input [5:0] rx_d_p,
input [5:0] rx_d_n,
//
output tx_clk_p,
output tx_clk_n,
output tx_frame_p,
output tx_frame_n,
output [5:0] tx_d_p,
output [5:0] tx_d_n
);
wire radio_clk_1x; // rx_clk_p divided by 4
wire radio_clk_2x; // rx_clk_p divided by 2
//---------------------------------------------------------------------------
// Mode Selection
//---------------------------------------------------------------------------
wire r_mimo;
wire r_tx_ch;
// Double synchronize the MIMO signal
synchronizer mimo_sync (
.clk(radio_clk_1x),
.rst(1'b0),
.in(a_mimo),
.out(r_mimo));
// Double synchronize the Tx channel signal
synchronizer tx_ch_sync (
.clk(radio_clk_1x),
.rst(1'b0),
.in(a_tx_ch),
.out(r_tx_ch));
//---------------------------------------------------------------------------
// Clock Mux
//---------------------------------------------------------------------------
// Use radio_clk_1x when MIMO = 1, radio_clk_2x when MIMO = 0
BUFGCTRL BUFGCTRL_radio_clk (
.I0 (radio_clk_1x),
.I1 (radio_clk_2x),
.S0 (r_mimo),
.S1 (~r_mimo),
.CE0 (1),
.CE1 (1),
.O (radio_clk),
.IGNORE0 (0),
.IGNORE1 (0)
);
//---------------------------------------------------------------------------
// Generate Alignment Strobes
//---------------------------------------------------------------------------
//
// The LVDS input logic generates the following two clocks:
//
// radio_clk_1x |‾‾‾‾‾|_____|‾‾‾‾‾|_____|‾‾‾‾‾|_____|‾‾‾‾‾|_____|‾‾‾‾‾|
//
// radio_clk_2x |‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|‾‾|__|
//
//
// Using simple logic, we create the following two signals from these clocks:
//
// align_1x |‾‾‾‾‾‾‾‾‾‾‾|___________|‾‾‾‾‾‾‾‾‾‾‾|___________|‾‾‾‾‾‾
//
// align_2x ______|‾‾‾‾‾‾‾‾‾‾‾|___________|‾‾‾‾‾‾‾‾‾‾‾|___________|
//
// These two alignment signals allow us to tell where in the frame period we
// are so that we can deserialize in the correct order.
//
//---------------------------------------------------------------------------
reg align_1x = 0;
reg align_2x = 0;
always @(posedge radio_clk_1x)
begin
align_1x <= ~align_1x;
end
always @(posedge radio_clk_2x)
begin
// Align data capture to 1x clock so that we stay in sync with data.
// Otherwise, the data might be serialized in the wrong order.
align_2x <= align_1x;
end
//---------------------------------------------------------------------------
// Rx MIMO/SISO Serialization
//---------------------------------------------------------------------------
//
// This block of code takes the dual outputs when in SISO mode and serializes
// them. Because we use the 2x clock when in SISO mode, this allows us to
// double the data rate when using a single channel.
//
//---------------------------------------------------------------------------
reg [11:0] rx_i0_ser;
reg [11:0] rx_q0_ser;
reg [11:0] rx_i1_ser;
reg [11:0] rx_q1_ser;
reg [11:0] rx_i0_out;
reg [11:0] rx_q0_out;
reg [11:0] rx_i1_out;
reg [11:0] rx_q1_out;
always @(posedge radio_clk_2x)
begin
rx_aligned <= rx_aligned_t;
if (align_1x ^ align_2x) begin
// This clock cycle corresponds to the first 1x cycle in which two
// samples are output, so grab data from port 0.
rx_i0_ser <= rx_i0_t;
rx_q0_ser <= rx_q0_t;
rx_i1_ser <= rx_i0_t;
rx_q1_ser <= rx_q0_t;
end else begin
// This radio_clk_2x cycle corresponds to the second 1x cycle in which
// two samples are output, so grab data from port 1.
rx_i0_ser <= rx_i1_t;
rx_q0_ser <= rx_q1_t;
rx_i1_ser <= rx_i1_t;
rx_q1_ser <= rx_q1_t;
end
// Select the correct Rx output based on MIMO setting
if (r_mimo) begin
rx_i0_out <= rx_i0_t;
rx_q0_out <= rx_q0_t;
rx_i1_out <= rx_i1_t;
rx_q1_out <= rx_q1_t;
end else begin
rx_i0_out <= rx_i0_ser;
rx_q0_out <= rx_q0_ser;
rx_i1_out <= rx_i1_ser;
rx_q1_out <= rx_q1_ser;
end
end
//---------------------------------------------------------------------------
// Synchronize Rx to radio_clk Domain
//---------------------------------------------------------------------------
//
// This crosses the radio data from the radio_clk_1x domain to the radio_clk
// domain. We use the falling edge of radio_clk to allow for the BUFG
// insertion delay.
//
//---------------------------------------------------------------------------
reg [11:0] rx_i0_fall;
reg [11:0] rx_q0_fall;
reg [11:0] rx_i1_fall;
reg [11:0] rx_q1_fall;
always @(negedge radio_clk)
begin
rx_i0_fall <= rx_i0_out;
rx_q0_fall <= rx_q0_out;
rx_i1_fall <= rx_i1_out;
rx_q1_fall <= rx_q1_out;
end
// Re-clock data on the rising edge to present the whole period to external IP
always @(posedge radio_clk)
begin
rx_i0 <= rx_i0_fall;
rx_q0 <= rx_q0_fall;
rx_i1 <= rx_i1_fall;
rx_q1 <= rx_q1_fall;
end
//---------------------------------------------------------------------------
// Tx MIMO/SISO Deserialization
//---------------------------------------------------------------------------
//
// This block of code takes the serialized output from the radios and
// parallelizes it onto the two radio ports of the Catalina interface. It
// also takes the radio data, output on the radio_clk domain, and crosses it
// to the radio_clk_1x domain.
//
//---------------------------------------------------------------------------
reg [11:0] tx_i0_del;
reg [11:0] tx_q0_del;
reg [11:0] tx_i1_del;
reg [11:0] tx_q1_del;
always @(posedge radio_clk_2x)
begin
// Capture copy of the data delayed by one radio_clk_2c cycle.
tx_i0_del <= tx_i0;
tx_q0_del <= tx_q0;
tx_i1_del <= tx_i1;
tx_q1_del <= tx_q1;
end
always @(posedge radio_clk_1x)
begin
if (r_mimo) begin
// In MIMO mode, radio_clk is radio_clk_1x, so we just capture the same
// data for each radio_clk_1x cycle.
tx_i0_t <= tx_i0;
tx_q0_t <= tx_q0;
tx_i1_t <= tx_i1;
tx_q1_t <= tx_q1;
end else begin
// In SISO mode, data is updated every radio_clk_2x cycle, so we output
// the data from the previous radio_clk_2x cycle onto channel 0 and the
// data from the current radio_clk_2x cycle onto channel 1. This puts the
// data in the correct order when in 1R1T mode.
if (r_tx_ch == 0) begin
tx_i0_t <= tx_i0_del;
tx_q0_t <= tx_q0_del;
tx_i1_t <= tx_i0;
tx_q1_t <= tx_q0;
end else begin
tx_i0_t <= tx_i1_del;
tx_q0_t <= tx_q1_del;
tx_i1_t <= tx_i1;
tx_q1_t <= tx_q1;
end
end
end
//---------------------------------------------------------------------------
// Catalina TX/RX Interface
//---------------------------------------------------------------------------
wire rx_aligned_t;
wire [11:0] rx_i0_t;
wire [11:0] rx_q0_t;
wire [11:0] rx_i1_t;
wire [11:0] rx_q1_t;
reg [11:0] tx_i0_t;
reg [11:0] tx_q0_t;
reg [11:0] tx_i1_t;
reg [11:0] tx_q1_t;
cat_io_lvds #(
.INVERT_FRAME_RX (0),
.INVERT_DATA_RX (6'b00_0000),
.INVERT_FRAME_TX (0),
.INVERT_DATA_TX (6'b00_0000),
.USE_CLOCK_IDELAY (USE_CLOCK_IDELAY),
.USE_DATA_IDELAY (USE_DATA_IDELAY),
.DATA_IDELAY_MODE (DATA_IDELAY_MODE),
.CLOCK_IDELAY_MODE (CLOCK_IDELAY_MODE),
.INPUT_CLOCK_DELAY (INPUT_CLOCK_DELAY),
.INPUT_DATA_DELAY (INPUT_DATA_DELAY),
.USE_CLOCK_ODELAY (USE_CLOCK_ODELAY),
.USE_DATA_ODELAY (USE_DATA_ODELAY),
.DATA_ODELAY_MODE (DATA_ODELAY_MODE),
.CLOCK_ODELAY_MODE (CLOCK_ODELAY_MODE),
.OUTPUT_CLOCK_DELAY (OUTPUT_CLOCK_DELAY),
.OUTPUT_DATA_DELAY (OUTPUT_DATA_DELAY),
.USE_BUFG (0)
) cat_io_lvds_i0 (
.rst (rst),
.clk200 (clk200),
// Data and frame timing
.mimo (1), // Set to 1 to always return all samples
.frame_sample (~r_mimo), // Frame timing corresponds to SISO/MIMO setting
// Delay control interface
.ctrl_clk (ctrl_clk),
//
.ctrl_in_data_delay (ctrl_in_data_delay),
.ctrl_in_clk_delay (ctrl_in_clk_delay),
.ctrl_ld_in_data_delay (ctrl_ld_in_data_delay),
.ctrl_ld_in_clk_delay (ctrl_ld_in_clk_delay),
//
.ctrl_out_data_delay (ctrl_out_data_delay),
.ctrl_out_clk_delay (ctrl_out_clk_delay),
.ctrl_ld_out_data_delay (ctrl_ld_out_data_delay),
.ctrl_ld_out_clk_delay (ctrl_ld_out_clk_delay),
// Baseband sample interface
.radio_clk (radio_clk_1x),
.radio_clk_2x (radio_clk_2x),
.rx_aligned (rx_aligned_t),
//
.rx_i0 (rx_i0_t),
.rx_q0 (rx_q0_t),
.rx_i1 (rx_i1_t),
.rx_q1 (rx_q1_t),
//
.tx_i0 (tx_i0_t),
.tx_q0 (tx_q0_t),
.tx_i1 (tx_i1_t),
.tx_q1 (tx_q1_t),
// Catalina interface
.rx_clk_p (rx_clk_p),
.rx_clk_n (rx_clk_n),
.rx_frame_p (rx_frame_p),
.rx_frame_n (rx_frame_n),
.rx_d_p (rx_d_p),
.rx_d_n (rx_d_n),
//
.tx_clk_p (tx_clk_p),
.tx_clk_n (tx_clk_n),
.tx_frame_p (tx_frame_p),
.tx_frame_n (tx_frame_n),
.tx_d_p (tx_d_p),
.tx_d_n (tx_d_n)
);
endmodule // cat_io_lvds_dual_mode
|