1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
//
// Copyright 2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Ethernet dispatcher
// Incoming ethernet packets are examined and sent to the correct destination
// There are 3 destinations, ZPU, other ethernet port (out), and vita router
// Packets going to the vita router will have the ethernet/ip/udp headers stripped off.
//
// To make things simpler, we start out by sending all packets to zpu and out port.
// By the end of the eth/ip/udp headers, we can determine where the correct destination is.
// If the correct destination is vita, we send an error indication on the zpu and out ports,
// which will cause the axi_packet_gate to drop those packets, and send the vita frame to
// the vita port.
//
// If at the end of the headers we determine the packet should go to zpu, then we send an
// error indication on the out port, the rest of the packet to zpu and nothing on vita.
// If it should go to out, we send the error indication to zpu, the rest of the packet to out,
// and nothing on vita.
//
// Downstream we should have adequate fifo space, otherwise we could get backed up here.
//
// No tuser bits sent to vita, as vita assumes there are no errors and that occupancy is
// indicated by the length field of the vita header.
//
// Rules for forwarding:
//
// Ethernet Broadcast (Dst MAC = ff:ff:ff:ff:ff:ff). Forward to both ZPU and XO MAC.
// ? Ethernet Multicast (Dst MAC = USRP_NEXT_HOP). Forward only to ZPU.
// ? Ethernet Multicast (Dst MAC = Unknown). Forward only to XO.
// Ethernet Unicast (Dst MAC = Unknown). Forward only to XO.
// Ethernet Unicast (Dst MAC = local). Look deeper......
// IP Broadcast. Forward to both ZPU and XO MAC. (Should be coverd by Eth broadcast)
// IP Multicast. ? Unknow Action.
// IP Unicast (Dst IP = local). Look deeper....
// UDP (Port = Listed) and its a VRLP packet. Forward only to VITA Radio Core.
// UDP (Port = Unknown). Forward only to ZPU.
//
//
module eth_dispatch
#(parameter BASE=0)
(
// Clocking and reset interface
input clk,
input reset,
input clear,
// Setting register interface
input set_stb,
input [7:0] set_addr,
input [31:0] set_data,
// Input 68bit AXI-Stream interface (from MAC)
input [63:0] in_tdata,
input [3:0] in_tuser,
input in_tlast,
input in_tvalid,
output in_tready,
// Output AXI-STream interface to VITA Radio Core
output [63:0] vita_tdata,
output vita_tlast,
output vita_tvalid,
input vita_tready,
// Output AXI-Stream interface to ZPU
output [63:0] zpu_tdata,
output [3:0] zpu_tuser,
output zpu_tlast,
output zpu_tvalid,
input zpu_tready,
// Output AXI-Stream interface to cross-over MAC
output [63:0] xo_tdata,
output [3:0] xo_tuser,
output xo_tlast,
output xo_tvalid,
input xo_tready,
// Debug
output [2:0] debug_flags,
output [31:0] debug
);
//---------------------------------------------------------
// State machine declarations
//---------------------------------------------------------
reg [2:0] state;
localparam WAIT_PACKET = 0;
localparam READ_HEADER = 1;
localparam FORWARD_ZPU = 2;
localparam FORWARD_ZPU_AND_XO = 3;
localparam FORWARD_XO = 4;
localparam FORWARD_RADIO_CORE = 5;
localparam DROP_PACKET = 6;
localparam CLASSIFY_PACKET = 7;
// Small RAM stores packet header during parsing.
// IJB consider changing HEADER_RAM_SIZE to 7
localparam HEADER_RAM_SIZE = 9;
(*ram_style="distributed"*) reg [68:0] header_ram [HEADER_RAM_SIZE-1:0];
reg [3:0] header_ram_addr;
wire header_done = (header_ram_addr == HEADER_RAM_SIZE-1);
reg fwd_input;
reg [63:0] in_tdata_reg;
wire out_tvalid;
wire out_tready;
wire out_tlast;
wire [3:0] out_tuser;
wire [63:0] out_tdata;
// Output AXI-Stream interface to VITA Radio Core
wire [63:0] vita_pre_tdata;
wire [3:0] vita_pre_tuser; // thrown away
wire vita_pre_tlast;
wire vita_pre_tvalid;
wire vita_pre_tready;
// pre2 to allow for fixing packets which were padded by ethernet
wire [63:0] vita_pre2_tdata;
wire vita_pre2_tlast;
wire vita_pre2_tvalid;
wire vita_pre2_tready;
// Output AXI-Stream interface to ZPU
wire [63:0] zpu_pre_tdata;
wire [3:0] zpu_pre_tuser;
wire zpu_pre_tlast;
wire zpu_pre_tvalid;
wire zpu_pre_tready;
// Output AXI-Stream interface to cross-over MAC
wire [63:0] xo_pre_tdata;
wire [3:0] xo_pre_tuser;
wire xo_pre_tlast;
wire xo_pre_tvalid;
wire xo_pre_tready;
// Packet Parse Flags
reg is_eth_dst_addr;
reg is_eth_broadcast;
reg is_eth_type_ipv4;
reg is_ipv4_dst_addr;
reg is_ipv4_proto_udp;
reg is_ipv4_proto_icmp;
reg [1:0] is_udp_dst_ports;
reg is_icmp_no_fwd;
reg is_chdr;
//---------------------------------------------------------
// Settings regs
//---------------------------------------------------------
// MAC address for the dispatcher module.
// This value is used to determine if the packet is meant
// for this device should be consumed
wire [47:0] my_mac;
setting_reg #(.my_addr(BASE), .awidth(8), .width(32)) sr_my_mac_lsb
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(my_mac[31:0]),.changed());
setting_reg #(.my_addr(BASE+1), .awidth(8), .width(16)) sr_my_mac_msb
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(my_mac[47:32]),.changed());
// IP address for the dispatcher module.
// This value is used to determine if the packet is addressed
// to this device
wire [31:0] my_ip;
setting_reg #(.my_addr(BASE+2), .awidth(8), .width(32)) sr_my_ip
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(my_ip[31:0]),.changed());
// This module supports two destination ports
wire [15:0] my_port0, my_port1;
setting_reg #(.my_addr(BASE+3), .awidth(8), .width(32)) sr_udp_port
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({my_port1[15:0],my_port0[15:0]}),.changed());
// forward_ndest: Forward to crossover path if MAC Addr in packet
// does not match "my_mac"
// forward_bcast: Forward broadcasts to crossover path
wire forward_ndest, forward_bcast;
setting_reg #(.my_addr(BASE+4), .awidth(8), .width(2)) sr_forward_ctrl
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({forward_ndest, forward_bcast}),.changed());
//ICMP Type and Code to forward packet to ZPU
wire [7:0] my_icmp_type, my_icmp_code;
setting_reg #(.my_addr(BASE+5), .awidth(8), .width(16)) sr_icmp_ctrl
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({my_icmp_type, my_icmp_code}),.changed());
//---------------------------------------------------------
// Packet Forwarding State machine.
//---------------------------------------------------------
// Read input packet and store the header into a RAM for
// classification. A header is defined as HEADER_RAM_SIZE
// number of 64-bit words.
// Based on clasification results, output the packet to the
// VITA port, crossover(XO) port or the ZPU. Note that the
// XO and ZPU ports require fully framed Eth packets so data
// from the RAM has to be replayed on the output. The state
// machine will hold off input packets until the header is
// replayed. The state machine also supports dropping pkts.
always @(posedge clk)
if (reset || clear) begin
state <= WAIT_PACKET;
header_ram_addr <= 0;
fwd_input <= 0;
end else begin
// Defaults.
case(state)
//
// Wait for start of a packet
// IJB: Add protection for a premature EOF here
//
WAIT_PACKET: begin
if (in_tvalid && in_tready) begin
header_ram[header_ram_addr] <= {in_tlast,in_tuser,in_tdata};
header_ram_addr <= header_ram_addr + 1;
state <= READ_HEADER;
end
fwd_input <= 0;
end
//
// Continue to read full packet header into RAM.
//
READ_HEADER: begin
if (in_tvalid && in_tready) begin
header_ram[header_ram_addr] <= {in_tlast,in_tuser,in_tdata};
// Have we reached end of fields we parse in header or got a short packet?
if (header_done || in_tlast) begin
// Make decision about where this packet is forwarded to.
state <= CLASSIFY_PACKET;
end // if (header_done || in_tlast)
else begin
header_ram_addr <= header_ram_addr + 1;
state <= READ_HEADER;
end // else: !if(header_done || in_tlast)
end // if (in_tvalid && in_tready)
end // case: READ_HEADER
//
// Classify Packet
//
CLASSIFY_PACKET: begin
// Make decision about where this packet is forwarded to.
if (is_eth_type_ipv4 && is_ipv4_proto_icmp && is_icmp_no_fwd) begin
header_ram_addr <= 0;
state <= FORWARD_ZPU;
end else if (is_eth_broadcast) begin
header_ram_addr <= 0;
state <= forward_bcast? FORWARD_ZPU_AND_XO : FORWARD_ZPU;
end else if (!is_eth_dst_addr && forward_ndest) begin
header_ram_addr <= 0;
state <= FORWARD_XO;
end else if (!is_eth_dst_addr && !forward_ndest) begin
header_ram_addr <= HEADER_RAM_SIZE - 1;
state <= DROP_PACKET;
end else if ((is_udp_dst_ports != 0) && is_chdr) begin
header_ram_addr <= 6; // Jump to CHDR
state <= FORWARD_RADIO_CORE;
end else begin
header_ram_addr <= 0;
state <= FORWARD_ZPU;
end
end // case: CLASSIFY_PACKET
//
// Forward this packet only to local ZPU
//
FORWARD_ZPU: begin
if (out_tvalid && out_tready) begin
if (out_tlast) begin
state <= WAIT_PACKET;
end
if (header_done) fwd_input <= 1;
header_ram_addr <= out_tlast? 4'b0 : header_ram_addr + 1;
end
end
//
// Forward this packet to both local ZPU and XO
//
FORWARD_ZPU_AND_XO: begin
if (out_tvalid && out_tready) begin
if (out_tlast) begin
state <= WAIT_PACKET;
end
if (header_done) fwd_input <= 1;
header_ram_addr <= out_tlast? 4'b0 : header_ram_addr + 1;
end
end
//
// Forward this packet to XO only
//
FORWARD_XO: begin
if (out_tvalid && out_tready) begin
if (out_tlast) begin
state <= WAIT_PACKET;
end
if (header_done) fwd_input <= 1;
header_ram_addr <= out_tlast? 4'b0 : header_ram_addr + 1;
end
end
//
// Forward this packet to the Radio Core only
//
FORWARD_RADIO_CORE: begin
if (out_tvalid && out_tready) begin
if (out_tlast) begin
state <= WAIT_PACKET;
end
if (header_done) fwd_input <= 1;
header_ram_addr <= out_tlast? 4'b0 : header_ram_addr + 1;
end
end
//
// Drop this packet on the ground
//
DROP_PACKET: begin
if (out_tvalid && out_tready) begin
if (out_tlast) begin
state <= WAIT_PACKET;
end
if (header_done) fwd_input <= 1;
header_ram_addr <= out_tlast? 4'b0 : header_ram_addr + 1;
end
end
endcase // case (state)
end // else: !if(reset || clear)
//---------------------------------------------------------
// Classifier State machine.
// Deep packet inspection during header ingress.
//---------------------------------------------------------
// As the packet header is pushed into the RAM, set classification
// bits so that by the time the input state machine reaches the
// CLASSIFY_PACKET state, the packet has been fully identified.
always @(posedge clk)
if (reset || clear) begin
is_eth_dst_addr <= 1'b0;
is_eth_broadcast <= 1'b0;
is_eth_type_ipv4 <= 1'b0;
is_ipv4_dst_addr <= 1'b0;
is_ipv4_proto_udp <= 1'b0;
is_ipv4_proto_icmp <= 1'b0;
is_udp_dst_ports <= 0;
is_icmp_no_fwd <= 0;
is_chdr <= 1'b0;
end else if (in_tvalid && in_tready) begin // if (reset || clear)
in_tdata_reg <= in_tdata;
case (header_ram_addr)
// Pipelined, so nothing to look at first cycle.
// Reset all the flags here.
0: begin
is_eth_dst_addr <= 1'b0;
is_eth_broadcast <= 1'b0;
is_eth_type_ipv4 <= 1'b0;
is_ipv4_dst_addr <= 1'b0;
is_ipv4_proto_udp <= 1'b0;
is_ipv4_proto_icmp <= 1'b0;
is_udp_dst_ports <= 0;
is_icmp_no_fwd <= 0;
is_chdr <= 1'b0;
end
1: begin
// Look at upper 16bits of MAC Dst Addr.
if (in_tdata_reg[15:0] == 16'hFFFF)
is_eth_broadcast <= 1'b1;
if (in_tdata_reg[15:0] == my_mac[47:32])
is_eth_dst_addr <= 1'b1;
end
2: begin
// Look at lower 32bits of MAC Dst Addr.
if (is_eth_broadcast && (in_tdata_reg[63:32] == 32'hFFFFFFFF))
is_eth_broadcast <= 1'b1;
else
is_eth_broadcast <= 1'b0;
if (is_eth_dst_addr && (in_tdata_reg[63:32] == my_mac[31:0]))
is_eth_dst_addr <= 1'b1;
else
is_eth_dst_addr <= 1'b0;
end // case: 2
3: begin
// Look at Ethertype
if (in_tdata_reg[47:32] == 16'h0800)
is_eth_type_ipv4 <= 1'b1;
// Extract Packet Length
// ADD THIS HERE.
end
4: begin
// Look at protocol enapsulated by IPv4
if ((in_tdata_reg[23:16] == 8'h11) && is_eth_type_ipv4)
is_ipv4_proto_udp <= 1'b1;
if ((in_tdata_reg[23:16] == 8'h01) && is_eth_type_ipv4)
is_ipv4_proto_icmp <= 1'b1;
end
5: begin
// Look at IP DST Address.
if ((in_tdata_reg[31:0] == my_ip[31:0]) && is_eth_type_ipv4)
is_ipv4_dst_addr <= 1'b1;
end
6: begin
// Look at UDP dest port
if ((in_tdata_reg[47:32] == my_port0[15:0]) && is_ipv4_proto_udp)
is_udp_dst_ports[0] <= 1'b1;
if ((in_tdata_reg[47:32] == my_port1[15:0]) && is_ipv4_proto_udp)
is_udp_dst_ports[1] <= 1'b1;
// Look at ICMP type and code
if (in_tdata_reg[63:48] == {my_icmp_type, my_icmp_code} && is_ipv4_proto_icmp)
is_icmp_no_fwd <= 1'b1;
end
7: begin
// Look for a possible CHDR header string
// IJB. NOTE this is not a good test for a CHDR packet, we perhaps don;t need this state anyhow.
if (in_tdata_reg[63:32] != 32'h0)
is_chdr <= 1'b1;
end
8: begin
// Check VRT Stream ID
// ADD THIS HERE.
// IJB. Perhaps delete this state.
end
endcase // case (header_ram_addr)
end // if (in_tvalid && in_tready)
//---------------------------------------------------------
// Output (Egress) Interface muxing
//---------------------------------------------------------
assign out_tready =
(state == DROP_PACKET) ||
((state == FORWARD_RADIO_CORE) && vita_pre_tready) ||
((state == FORWARD_XO) && xo_pre_tready) ||
((state == FORWARD_ZPU) && zpu_pre_tready) ||
((state == FORWARD_ZPU_AND_XO) && zpu_pre_tready && xo_pre_tready);
assign out_tvalid = ((state == FORWARD_RADIO_CORE) ||
(state == FORWARD_XO) ||
(state == FORWARD_ZPU) ||
(state == FORWARD_ZPU_AND_XO) ||
(state == DROP_PACKET)) && (!fwd_input || in_tvalid);
assign {out_tlast,out_tuser,out_tdata} = fwd_input ? {in_tlast,in_tuser,in_tdata} : header_ram[header_ram_addr];
assign in_tready = (state == WAIT_PACKET) ||
(state == READ_HEADER) ||
(out_tready && fwd_input);
//
// Because we can forward to both the ZPU and XO FIFO's concurrently
// we have to make sure both can accept data in the same cycle.
// This makes it possible for either destination to block the other.
// Make sure (both) destination(s) can accept data before passing it.
//
assign xo_pre_tvalid = out_tvalid &&
((state == FORWARD_XO) ||
((state == FORWARD_ZPU_AND_XO) && zpu_pre_tready));
assign zpu_pre_tvalid = out_tvalid &&
((state == FORWARD_ZPU) ||
((state == FORWARD_ZPU_AND_XO) && xo_pre_tready));
assign vita_pre_tvalid = out_tvalid &&
(state == FORWARD_RADIO_CORE);
assign {zpu_pre_tlast, zpu_pre_tuser, zpu_pre_tdata} = {out_tlast, out_tuser, out_tdata};
assign {xo_pre_tlast, xo_pre_tuser, xo_pre_tdata} = {out_tlast, out_tuser, out_tdata};
assign {vita_pre_tlast, vita_pre_tuser, vita_pre_tdata} = {out_tlast, out_tuser, out_tdata}; // vita_pre_tuser thrown away
//---------------------------------------------------------
// Egress FIFO's
//---------------------------------------------------------
// These FIFO's have to be fairly large to prevent any egress
// port from backpressuring the input state machine.
// The ZPU and XO ports are inherently slow consumers so they
// get a large buffer. The VITA port is fast but high throughput
// so even that needs a large FIFO.
axi_fifo #(.WIDTH(69),.SIZE(10))
axi_fifo_zpu (
.clk(clk),
.reset(reset),
.clear(clear),
.i_tdata({zpu_pre_tlast,zpu_pre_tuser,zpu_pre_tdata}),
.i_tvalid(zpu_pre_tvalid),
.i_tready(zpu_pre_tready),
.o_tdata({zpu_tlast,zpu_tuser,zpu_tdata}),
.o_tvalid(zpu_tvalid),
.o_tready(zpu_tready),
.space(),
.occupied()
);
axi_fifo #(.WIDTH(69),.SIZE(10))
axi_fifo_xo (
.clk(clk),
.reset(reset),
.clear(clear),
.i_tdata({xo_pre_tlast,xo_pre_tuser,xo_pre_tdata}),
.i_tvalid(xo_pre_tvalid),
.i_tready(xo_pre_tready),
.o_tdata({xo_tlast,xo_tuser,xo_tdata}),
.o_tvalid(xo_tvalid),
.o_tready(xo_tready),
.space(),
.occupied()
);
axi_fifo #(.WIDTH(65),.SIZE(10))
axi_fifo_vita (
.clk(clk),
.reset(reset),
.clear(clear),
.i_tdata({vita_pre_tlast,vita_pre_tdata}),
.i_tvalid(vita_pre_tvalid),
.i_tready(vita_pre_tready),
.o_tdata({vita_pre2_tlast,vita_pre2_tdata}),
.o_tvalid(vita_pre2_tvalid),
.o_tready(vita_pre2_tready),
.space(),
.occupied()
);
fix_short_packet fix_short_packet_vita (.clk(clk), .reset(reset), .clear(clear),
.i_tdata(vita_pre2_tdata), .i_tlast(vita_pre2_tlast), .i_tvalid(vita_pre2_tvalid), .i_tready(vita_pre2_tready),
.o_tdata(vita_tdata), .o_tlast(vita_tlast), .o_tvalid(vita_tvalid), .o_tready(vita_tready));
endmodule // eth_dispatch
|