1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
//
// Copyright 2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Note: Register addresses defined radio_core_regs.vh
module noc_block_radio_core #(
parameter NOC_ID = 64'h12AD_1000_0000_0000,
parameter NUM_CHANNELS = 1,
parameter WIDTH = 32, // Num bits width of the AXI stream data (can be 32 or 64)
parameter STR_SINK_FIFOSIZE = {NUM_CHANNELS{8'd11}},
parameter COMPAT_NUM_MAJOR = 32'h1,
parameter COMPAT_NUM_MINOR = 32'h0,
parameter MTU = 10 //Log2 of maximum packet size (in 8-byte words)
)(
input bus_clk, input bus_rst,
input ce_clk, input ce_rst,
input [63:0] i_tdata, input i_tlast, input i_tvalid, output i_tready,
output [63:0] o_tdata, output o_tlast, output o_tvalid, input o_tready,
// Output timed settings bus, one per radio
output [NUM_CHANNELS-1:0] db_fe_set_stb, output [NUM_CHANNELS*8-1:0] db_fe_set_addr, output [NUM_CHANNELS*32-1:0] db_fe_set_data,
input [NUM_CHANNELS-1:0] db_fe_rb_stb, output [NUM_CHANNELS*8-1:0] db_fe_rb_addr, input [NUM_CHANNELS*64-1:0] db_fe_rb_data,
// Ports connected to radio front end
input [NUM_CHANNELS*WIDTH-1:0] rx, input [NUM_CHANNELS-1:0] rx_stb, output [NUM_CHANNELS-1:0] rx_running,
output [NUM_CHANNELS*WIDTH-1:0] tx, input [NUM_CHANNELS-1:0] tx_stb, output [NUM_CHANNELS-1:0] tx_running,
// Interfaces to front panel and daughter board
input pps, input sync_in, output sync_out,
output [63:0] debug
);
////////////////////////////////////////////////////////////
//
// RFNoC Shell
//
////////////////////////////////////////////////////////////
wire [NUM_CHANNELS*32-1:0] set_data;
wire [NUM_CHANNELS*8-1:0] set_addr;
wire [NUM_CHANNELS-1:0] set_stb;
wire [8*NUM_CHANNELS-1:0] rb_addr;
wire [64*NUM_CHANNELS-1:0] rb_data;
wire [NUM_CHANNELS-1:0] rb_stb, rb_holdoff;
wire [63:0] cmdout_tdata, ackin_tdata;
wire cmdout_tlast, cmdout_tvalid, cmdout_tready, ackin_tlast, ackin_tvalid, ackin_tready;
wire [64*NUM_CHANNELS-1:0] str_sink_tdata, str_src_tdata;
wire [NUM_CHANNELS-1:0] str_sink_tlast, str_sink_tvalid, str_sink_tready, str_src_tlast, str_src_tvalid, str_src_tready;
wire [63:0] vita_time;
wire [NUM_CHANNELS-1:0] clear_tx_seqnum;
wire [16*NUM_CHANNELS-1:0] src_sid, next_dst_sid, resp_in_dst_sid, resp_out_dst_sid;
noc_shell #(
.NOC_ID(NOC_ID),
.INPUT_PORTS(NUM_CHANNELS),
.OUTPUT_PORTS(NUM_CHANNELS),
.STR_SINK_FIFOSIZE({NUM_CHANNELS{STR_SINK_FIFOSIZE[7:0]}}),
.MTU({NUM_CHANNELS{MTU[7:0]}}),
.USE_TIMED_CMDS(1), // Settings bus transactions will occur at the vita time specified in the command packet
.CMD_FIFO_SIZE({NUM_CHANNELS{8'd8}}), // Up to 128 commands in flight per radio (256/2 lines per command packet = 128 untimed commands, 256/3 timed)
.RESP_FIFO_SIZE(5)) // Provide buffering for responses to prevent mux from back pressuring
noc_shell (
.bus_clk(bus_clk), .bus_rst(bus_rst),
.i_tdata(i_tdata), .i_tlast(i_tlast), .i_tvalid(i_tvalid), .i_tready(i_tready),
.o_tdata(o_tdata), .o_tlast(o_tlast), .o_tvalid(o_tvalid), .o_tready(o_tready),
// Compute Engine Clock Domain
.clk(ce_clk), .reset(ce_rst),
// Control Sink
.set_data(set_data), .set_addr(set_addr), .set_stb(set_stb), .set_time(), .set_has_time(),
.rb_stb(rb_stb), .rb_addr(rb_addr), .rb_data(rb_data),
// Control Source
.cmdout_tdata(cmdout_tdata), .cmdout_tlast(cmdout_tlast), .cmdout_tvalid(cmdout_tvalid), .cmdout_tready(cmdout_tready),
.ackin_tdata(ackin_tdata), .ackin_tlast(ackin_tlast), .ackin_tvalid(ackin_tvalid), .ackin_tready(ackin_tready),
// Stream Sink
.str_sink_tdata(str_sink_tdata), .str_sink_tlast(str_sink_tlast), .str_sink_tvalid(str_sink_tvalid), .str_sink_tready(str_sink_tready),
// Stream Source
.str_src_tdata(str_src_tdata), .str_src_tlast(str_src_tlast), .str_src_tvalid(str_src_tvalid), .str_src_tready(str_src_tready),
// Misc
.vita_time(vita_time), .clear_tx_seqnum(clear_tx_seqnum),
.src_sid(src_sid), .next_dst_sid(next_dst_sid), .resp_in_dst_sid(resp_in_dst_sid), .resp_out_dst_sid(resp_out_dst_sid),
.debug(debug)
);
// Disable unused response port
assign ackin_tready = 1'b1;
wire [WIDTH-1:0] m_axis_data_tdata[0:NUM_CHANNELS-1];
wire [127:0] m_axis_data_tuser[0:NUM_CHANNELS-1];
wire [NUM_CHANNELS-1:0] m_axis_data_tlast;
wire [NUM_CHANNELS-1:0] m_axis_data_tvalid;
wire [NUM_CHANNELS-1:0] m_axis_data_tready;
wire [WIDTH-1:0] s_axis_data_tdata[0:NUM_CHANNELS-1];
wire [127:0] s_axis_data_tuser[0:NUM_CHANNELS-1];
wire [NUM_CHANNELS-1:0] s_axis_data_tlast;
wire [NUM_CHANNELS-1:0] s_axis_data_tvalid;
wire [NUM_CHANNELS-1:0] s_axis_data_tready;
wire [NUM_CHANNELS*64-1:0] resp_tdata;
wire [NUM_CHANNELS-1:0] resp_tlast, resp_tvalid, resp_tready;
////////////////////////////////////////////////////////////
//
// Radio Cores
//
////////////////////////////////////////////////////////////
// Radio response packet mux
axi_mux #(.WIDTH(64), .PRE_FIFO_SIZE(0), .POST_FIFO_SIZE(1), .SIZE(NUM_CHANNELS))
axi_mux_cmd (
.clk(ce_clk), .reset(ce_rst), .clear(1'b0),
.i_tdata(resp_tdata), .i_tlast(resp_tlast), .i_tvalid(resp_tvalid), .i_tready(resp_tready),
.o_tdata(cmdout_tdata), .o_tlast(cmdout_tlast), .o_tvalid(cmdout_tvalid), .o_tready(cmdout_tready)
);
// Mux settings buses for any resources shared between radio cores
wire set_stb_mux;
wire [7:0] set_addr_mux;
wire [31:0] set_data_mux;
settings_bus_mux #(
.AWIDTH(8),
.DWIDTH(32),
.NUM_BUSES(NUM_CHANNELS))
settings_bus_mux (
.clk(ce_clk), .reset(ce_rst), .clear(1'b0),
.in_set_stb(set_stb), .in_set_addr(set_addr), .in_set_data(set_data),
.out_set_stb(set_stb_mux), .out_set_addr(set_addr_mux), .out_set_data(set_data_mux), .ready(1'b1)
);
// VITA time is shared between radio cores
`include "radio_core_regs.vh"
wire [63:0] vita_time_lastpps;
timekeeper #(
.SR_TIME_HI(SR_TIME_HI),
.SR_TIME_LO(SR_TIME_LO),
.SR_TIME_CTRL(SR_TIME_CTRL),
.INCREMENT(WIDTH == 64 ? 64'h2 : 64'h1))
timekeeper (
.clk(ce_clk), .reset(ce_rst), .pps(pps), .sync_in(sync_in), .strobe(rx_stb[0]),
.set_stb(set_stb_mux), .set_addr(set_addr_mux), .set_data(set_data_mux),
.vita_time(vita_time), .vita_time_lastpps(vita_time_lastpps),
.sync_out(sync_out)
);
wire [64*NUM_CHANNELS-1:0] rb_data_dp;
wire [NUM_CHANNELS-1:0] rb_stb_dp;
// Expose settings bus externally
assign db_fe_set_stb = set_addr >= SR_DB_FE_BASE ? set_stb : 1'b0;
assign db_fe_set_addr = set_addr;
assign db_fe_set_data = set_data;
assign db_fe_rb_addr = rb_addr;
genvar i;
generate
for (i = 0; i < NUM_CHANNELS; i = i + 1) begin : gen
////////////////////////////////////////////////////////////
//
// AXI Wrapper
// Convert RFNoC Shell interface into AXI stream interface
// One per radio interface
//
////////////////////////////////////////////////////////////
axi_wrapper #(
.MTU(MTU),
.SIMPLE_MODE(0),
.USE_SEQ_NUM(1),
.WIDTH(WIDTH))
axi_wrapper (
.bus_clk(bus_clk), .bus_rst(bus_rst),
.clk(ce_clk), .reset(ce_rst),
.clear_tx_seqnum(clear_tx_seqnum[i]),
.next_dst(next_dst_sid[16*i+15:16*i]),
.set_stb(1'b0), .set_addr(8'd0), .set_data(32'd0),
.i_tdata(str_sink_tdata[64*i+63:64*i]), .i_tlast(str_sink_tlast[i]), .i_tvalid(str_sink_tvalid[i]), .i_tready(str_sink_tready[i]),
.o_tdata(str_src_tdata[64*i+63:64*i]), .o_tlast(str_src_tlast[i]), .o_tvalid(str_src_tvalid[i]), .o_tready(str_src_tready[i]),
.m_axis_data_tdata(m_axis_data_tdata[i]),
.m_axis_data_tuser(m_axis_data_tuser[i]),
.m_axis_data_tlast(m_axis_data_tlast[i]),
.m_axis_data_tvalid(m_axis_data_tvalid[i]),
.m_axis_data_tready(m_axis_data_tready[i]),
.s_axis_data_tdata(s_axis_data_tdata[i]),
.s_axis_data_tuser(s_axis_data_tuser[i]),
.s_axis_data_tlast(s_axis_data_tlast[i]),
.s_axis_data_tvalid(s_axis_data_tvalid[i]),
.s_axis_data_tready(s_axis_data_tready[i]),
.m_axis_pkt_len_tdata(),
.m_axis_pkt_len_tvalid(),
.m_axis_pkt_len_tready(),
.m_axis_config_tdata(),
.m_axis_config_tlast(),
.m_axis_config_tvalid(),
.m_axis_config_tready(1'b0)
);
radio_datapath_core #(
.RADIO_NUM(i),
.WIDTH(WIDTH)
) radio_datapath_core_i (
.clk(ce_clk), .reset(ce_rst),
.clear_rx(clear_tx_seqnum[i]), .clear_tx(clear_tx_seqnum[i]),
.src_sid(src_sid[16*i+15:16*i]),
.dst_sid(next_dst_sid[16*i+15:16*i]),
.rx_resp_dst_sid(resp_out_dst_sid[16*i+15:16*i]),
.tx_resp_dst_sid(resp_in_dst_sid[16*i+15:16*i]),
.rx(rx[WIDTH*i+:WIDTH]), .rx_stb(rx_stb[i]), .rx_running(rx_running[i]),
.tx(tx[WIDTH*i+:WIDTH]), .tx_stb(tx_stb[i]), .tx_running(tx_running[i]),
.vita_time(vita_time), .vita_time_lastpps(vita_time_lastpps),
.set_stb(set_stb[i]), .set_addr(set_addr[8*i+7:8*i]), .set_data(set_data[32*i+31:32*i]),
.rb_stb(rb_stb_dp[i]), .rb_addr(rb_addr[8*i+7:8*i]), .rb_data(rb_data_dp[64*i+63:64*i]), .rb_holdoff(~db_fe_rb_stb[i]),
.tx_tdata(m_axis_data_tdata[i]), .tx_tlast(m_axis_data_tlast[i]), .tx_tvalid(m_axis_data_tvalid[i]), .tx_tready(m_axis_data_tready[i]), .tx_tuser(m_axis_data_tuser[i]),
.rx_tdata(s_axis_data_tdata[i]), .rx_tlast(s_axis_data_tlast[i]), .rx_tvalid(s_axis_data_tvalid[i]), .rx_tready(s_axis_data_tready[i]), .rx_tuser(s_axis_data_tuser[i]),
.resp_tdata(resp_tdata[64*i+63:64*i]), .resp_tlast(resp_tlast[i]), .resp_tvalid(resp_tvalid[i]), .resp_tready(resp_tready[i])
);
assign rb_stb[i] = db_fe_rb_stb[i] | rb_stb_dp[i];
assign rb_data[64*i+63:64*i] = (rb_addr[8*i+7:8*i] >= RB_DB_FE_BASE) ? db_fe_rb_data[64*i+63:64*i] :
(rb_addr[8*i+7:8*i] == RB_COMPAT_NUM) ? {COMPAT_NUM_MAJOR, COMPAT_NUM_MINOR} :
rb_data_dp[64*i+63:64*i];
end
endgenerate
endmodule
|