1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// - Implements rate change of N:M (a.k.a. M/N), handles headers automatically
// - Note: N should always be written before M in software to prevent false rate changes
// while the block is active
// - User code is responsible for generating correct number of outputs per input
// > Example: When set 1/N, after N input samples block should output 1 sample. If
// user code's pipelining requires additional samples to "push" the 1
// sample out, it is the user's responsibility to make the mechanism
// (such as injecting extra samples) to do so.
// - Will always send an integer multiple of N samples to user logic. This ensures
// the user will not need to manually clear a "partial output sample" stuck in their
// pipeline due to an uneven (in respect to decimation rate) number of input samples.
// - Can optionally strobe clear_user after receiving packet with EOB
// > enable_clear_user must be enabled via CONFIG settings register
// > Warning: Input will be throttled until last packet has completely passed through
// user code to prevent clearing valid data. In certain conditions, this throttling
// can have a significant impact on throughput.
// - Output packet size will be identical to input packet size. The only exception is
// the final output packet, which may be shorter due to a partial input packet.
// Limitations:
// - Rate changes are ignored while active. Block must be cleared or packet with EOB
// (and enable_clear_user is set) will cause new rates to be loaded.
// - Can potentially use large amounts of block RAM when using large decimation rates
// (greater than 2K). This occurs due to the feature that the block always sends a multiple
// of N samples to the user. Implementing this feature requires N samples to be buffered.
// - User code with long pipelines may need to increase HEADER_FIFOSIZE. The debug signal
// warning_header_fifo_full is useful in determining this case.
//
// Settings Registers:
// sr_n: Number of input samples per M output samples (Always write N before M)
// sr_m: Number of output samples per N input samples
// sr_config: 0: Enable clear_user signal.
module axi_rate_change #(
parameter WIDTH = 32, // Input bit width, must be a power of 2 and greater than or equal to 8.
parameter MAX_N = 2**16,
parameter MAX_M = 2**16,
parameter MAXIMIZE_OUTPUT_PKT_LEN = 1,
// Settings registers
parameter SR_N_ADDR = 0,
parameter SR_M_ADDR = 1,
parameter SR_CONFIG_ADDR = 2
)(
input clk, input reset, input clear,
output clear_user, // Strobed after end of burst. Throttles input. Useful for resetting user code between bursts.
input [15:0] src_sid, input [15:0] dst_sid,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input [WIDTH-1:0] i_tdata, input i_tlast, input i_tvalid, output i_tready, input [127:0] i_tuser,
output [WIDTH-1:0] o_tdata, output o_tlast, output o_tvalid, input o_tready, output [127:0] o_tuser,
output [WIDTH-1:0] m_axis_data_tdata, output m_axis_data_tlast, output m_axis_data_tvalid, input m_axis_data_tready,
input [WIDTH-1:0] s_axis_data_tdata, input s_axis_data_tlast, input s_axis_data_tvalid, output s_axis_data_tready,
// Debugging signals:
// - Warnings indicate there may be an issue with user code.
// - Errors mean the user code has violated a rule.
// - Signals latch once set and block must be reset to clear.
output reg warning_long_throttle, // In the throttle state for a "long" time.
output reg error_extra_outputs, // User code generated extra outputs, i.e. received more than the expected M outputs.
output reg error_drop_pkt_lockup // Drop partial packet module is not accepting data even though user code is ready.
);
reg [$clog2(MAX_N+1)-1:0] n = 1;
reg [$clog2(MAX_M+1)-1:0] m = 1;
wire [WIDTH-1:0] i_reg_tdata;
wire i_reg_tvalid, i_reg_tready, i_reg_tlast;
wire i_reg_tvalid_int, i_reg_tready_int, i_reg_tlast_int;
reg throttle = 1'b1, first_header, partial_first_word;
reg [15:0] word_cnt_div_n;
reg [$clog2(MAX_N+1)-1:0] word_cnt_div_n_frac = 1;
reg [$clog2(MAX_N+1)-1:0] in_pkt_cnt = 1;
reg send_done;
reg rate_changed;
/********************************************************
** Settings Registers
********************************************************/
wire [$clog2(MAX_N+1)-1:0] sr_n;
wire n_changed;
setting_reg #(.my_addr(SR_N_ADDR), .width($clog2(MAX_N+1)), .at_reset(1)) set_n (
.clk(clk), .rst(reset), .strobe(set_stb), .addr(set_addr), .in(set_data),
.out(sr_n), .changed(n_changed));
wire [$clog2(MAX_M+1)-1:0] sr_m;
wire m_changed;
setting_reg #(.my_addr(SR_M_ADDR), .width($clog2(MAX_M+1)), .at_reset(1)) set_m (
.clk(clk), .rst(reset), .strobe(set_stb), .addr(set_addr), .in(set_data),
.out(sr_m), .changed(m_changed));
wire sr_config;
wire enable_clear_user; // Enable strobing clear_user between bursts.
setting_reg #(.my_addr(SR_CONFIG_ADDR), .width(1), .at_reset(1'b1)) set_config (
.clk(clk), .rst(reset), .strobe(set_stb), .addr(set_addr), .in(set_data),
.out(sr_config), .changed());
assign enable_clear_user = sr_config;
/********************************************************
** Header, word count FIFOs
** - Header provides VITA Time and payload length for
** output packets
** - Word count provides a normalized count for the
** output state machine to know when it has consumed
** the final input sample in a burst.
********************************************************/
// Decode input header
wire [127:0] i_reg_tuser;
wire has_time_in, eob_in, eob_in_header;
wire [15:0] payload_length_in;
reg [15:0] payload_length_out;
wire [63:0] vita_time_in;
cvita_hdr_decoder cvita_hdr_decoder_in_header (
.header(i_reg_tuser), .pkt_type(), .eob(eob_in_header),
.has_time(has_time_in), .seqnum(), .length(), .payload_length(payload_length_in),
.src_sid(), .dst_sid(), .vita_time(vita_time_in));
assign eob_in = eob_in_header | rate_changed;
reg [15:0] word_cnt_div_n_tdata;
wire [15:0] word_cnt_div_n_fifo_tdata;
reg word_cnt_div_n_tvalid;
wire word_cnt_div_n_tready, word_cnt_div_n_fifo_tvalid, word_cnt_div_n_fifo_tready;
axi_fifo #(.WIDTH(16), .SIZE(0)) axi_fifo_word_cnt (
.clk(clk), .reset(reset), .clear(clear),
.i_tdata(word_cnt_div_n_tdata), .i_tvalid(word_cnt_div_n_tvalid), .i_tready(word_cnt_div_n_tready),
.o_tdata(word_cnt_div_n_fifo_tdata), .o_tvalid(word_cnt_div_n_fifo_tvalid), .o_tready(word_cnt_div_n_fifo_tready),
.space(), .occupied());
/********************************************************
** Register input stream
** - Upsteam will be throttled when clearing user logic
********************************************************/
// Input register with header
axi_fifo_flop #(.WIDTH(WIDTH+1+128)) axi_fifo_flop_input (
.clk(clk), .reset(reset), .clear(clear),
.i_tdata({i_tlast,i_tdata,i_tuser}), .i_tvalid(i_tvalid), .i_tready(i_tready),
.o_tdata({i_reg_tlast,i_reg_tdata,i_reg_tuser}), .o_tvalid(i_reg_tvalid_int), .o_tready(i_reg_tready),
.space(), .occupied());
assign i_reg_tready = i_reg_tready_int & word_cnt_div_n_tready & ~throttle;
assign i_reg_tvalid = i_reg_tvalid_int & word_cnt_div_n_tready & ~throttle;
// Assert AXI Drop Partial Packet's i_tlast every N samples, which is used to detect and drop
// partial output samples.
assign i_reg_tlast_int = (word_cnt_div_n_frac == n) | (eob_in & i_reg_tlast);
/********************************************************
** Input state machine
********************************************************/
reg [1:0] input_state;
localparam RECV_INIT = 0;
localparam RECV = 1;
localparam RECV_WAIT_FOR_SEND_DONE = 2;
always @(posedge clk) begin
if (reset | clear) begin
n <= 1;
m <= 1;
rate_changed <= 1'b0;
first_header <= 1'b1;
partial_first_word <= 1'b1;
payload_length_out <= 'd0;
word_cnt_div_n <= 0;
word_cnt_div_n_frac <= 1;
throttle <= 1'b1;
word_cnt_div_n_tvalid <= 1'b0;
word_cnt_div_n_tdata <= 'd0;
input_state <= RECV_INIT;
end else begin
if (word_cnt_div_n_tvalid & word_cnt_div_n_tready) begin
word_cnt_div_n_tvalid <= 1'b0;
end
// Input state machine
case (input_state)
RECV_INIT : begin
n <= sr_n;
m <= sr_m;
rate_changed <= 1'b0;
first_header <= 1'b1;
partial_first_word <= 1'b1;
payload_length_out <= 'd0;
word_cnt_div_n <= 0;
word_cnt_div_n_frac <= 1;
if (i_reg_tvalid_int & word_cnt_div_n_tready) begin
throttle <= 1'b0;
input_state <= RECV;
end
end
// Logic used by the RECV state to track several variables:
// word_cnt_div_n: Number of words received divided by n.
// Needed for tracking final sample in a burst.
// word_cnt_div_n_frac: Used to increment word_cnt_div_n. Can be
// thought of as the fractional part of
// word_cnt_div_n.
// in_pkt_cnt: Similar to in_word_cnt, but for packets. Used
// to determine when a group of N packets has been
// received to store the next header.
// first_header: We only use the header from the first packet in
// a group of N packets (this greatly reduces
// the header FIFO size).
RECV : begin
// If rate changed, force a EOB.
if (m_changed) begin
rate_changed <= 1'b1;
end
if (i_reg_tvalid & i_reg_tready) begin
// Track the number of words sent to the user divided by N.
// At the end of a burst, this value is forwarded to the output
// state machine and used to determine when the final sample has
// arrived from the user code.
if (word_cnt_div_n_frac == n) begin
word_cnt_div_n <= word_cnt_div_n + 1;
word_cnt_div_n_frac <= 1;
end else begin
word_cnt_div_n_frac <= word_cnt_div_n_frac + 1;
end
// Use payload length from first packet
first_header <= 1'b0;
if (first_header) begin
payload_length_out <= payload_length_in;
end else if (MAXIMIZE_OUTPUT_PKT_LEN) begin
if (payload_length_out < payload_length_in) begin
payload_length_out <= payload_length_in;
end
end
// Track when at least N input samples have been received in this burst
if (partial_first_word & (word_cnt_div_n_frac == n)) begin
partial_first_word <= 1'b0;
end
// Burst ended before we received enough samples to form
// at least one full output sample.
// Note: axi_drop_partial_packet automatically handles
// dropping the partial sample.
if (i_reg_tlast & eob_in & partial_first_word) begin
input_state <= RECV_INIT;
end else begin
if (i_reg_tlast) begin
// At the end of a burst, forward the number of words divided by N to
// the output state machine via a FIFO. This allows the output state
// machine to know when it has received the final output word.
// We use a FIFO in case the bursts are very small and we
// need to store several of these values.
if (eob_in) begin
word_cnt_div_n_tdata <= word_cnt_div_n + (word_cnt_div_n_frac == n);
word_cnt_div_n_tvalid <= 1'b1;
throttle <= 1'b1;
if (enable_clear_user) begin
input_state <= RECV_WAIT_FOR_SEND_DONE;
end else begin
input_state <= RECV_INIT;
end
end
end
end
end
end
// Wait until last sample has been output and user logic is cleared
// WARNING: This can be a huge bubble state! However, since it only happens with
// EOBs, it should be infrequent.
RECV_WAIT_FOR_SEND_DONE : begin
if (send_done) begin
input_state <= RECV_INIT;
end
end
default : begin
input_state <= RECV_INIT;
end
endcase
end
end
assign clear_user = send_done & enable_clear_user;
/********************************************************
** AXI Drop Partial Packet (to user)
** - Enforces sending integer multiple of N samples
** to user
********************************************************/
axi_drop_partial_packet #(
.WIDTH(WIDTH+1),
.HOLD_LAST_WORD(1),
.MAX_PKT_SIZE(MAX_N),
.SR_PKT_SIZE_ADDR(SR_N_ADDR))
axi_drop_partial_packet (
.clk(clk), .reset(reset), .clear(clear | send_done),
.flush(word_cnt_div_n_tvalid & word_cnt_div_n_tready), // Flush on EOB
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.i_tdata({i_reg_tlast,i_reg_tdata}), .i_tvalid(i_reg_tvalid), .i_tlast(i_reg_tlast_int), .i_tready(i_reg_tready_int),
.o_tdata({m_axis_data_tlast,m_axis_data_tdata}), .o_tvalid(m_axis_data_tvalid), .o_tlast(/* Unused */), .o_tready(m_axis_data_tready));
/********************************************************
** Output state machine
********************************************************/
reg [1:0] output_state;
localparam SEND_INIT = 0;
localparam SEND = 1;
wire [WIDTH-1:0] o_reg_tdata;
wire [127:0] o_reg_tuser;
wire o_reg_tvalid, o_reg_tready, o_reg_tlast, o_reg_tlast_int;
reg [15:0] out_payload_cnt = (WIDTH/8);
reg [15:0] word_cnt_div_m;
reg [$clog2(MAX_M+1)-1:0] word_cnt_div_m_frac = 1;
reg [$clog2(MAX_M+1)-1:0] out_pkt_cnt = 1;
// End of burst tracking. Compare the number of words sent to the user divided by N
// to the number of words received from the user divided by M. When they equal each other
// then we have received the last word from the user in this burst.
// Note: Using word_cnt_div_n_fifo_tdata to make sure the last word is identified before
// it has been consumed.
wire last_word_in_burst = word_cnt_div_n_fifo_tvalid &
(word_cnt_div_m == word_cnt_div_n_fifo_tdata) &
(word_cnt_div_m_frac == m);
always @(posedge clk) begin
if (reset | clear) begin
word_cnt_div_m <= 1;
word_cnt_div_m_frac <= 1;
out_payload_cnt <= (WIDTH/8);
send_done <= 1'b0;
output_state <= SEND_INIT;
end else begin
// Track
case (output_state)
SEND_INIT : begin
word_cnt_div_m <= 1;
word_cnt_div_m_frac <= 1;
out_payload_cnt <= (WIDTH/8);
send_done <= 1'b0;
output_state <= SEND;
end
SEND : begin
if (o_reg_tvalid & o_reg_tready) begin
if (o_reg_tlast) begin
// Track number of samples from user to set tlast
out_payload_cnt <= (WIDTH/8);
end else begin
out_payload_cnt <= out_payload_cnt + (WIDTH/8);
end
// Track number of words consumed divided by M. This is used
// in conjunction with word_cnt_div_n to determine when we have received
// the last word in a burst from the user.
if (word_cnt_div_m_frac == m) begin
word_cnt_div_m <= word_cnt_div_m + 1;
word_cnt_div_m_frac <= 1;
end else begin
word_cnt_div_m_frac <= word_cnt_div_m_frac + 1;
end
if (last_word_in_burst) begin
send_done <= 1'b1;
output_state <= SEND_INIT;
end
end
end
default : begin
output_state <= SEND_INIT;
end
endcase
end
end
// Only pop this FIFO at EOB.
assign word_cnt_div_n_fifo_tready = o_reg_tvalid & o_reg_tready & last_word_in_burst;
/********************************************************
** Adjust VITA time
********************************************************/
localparam VT_INIT = 0;
localparam VT_INCREMENT = 1;
reg vt_state;
reg has_time_out, has_time_clear;
reg [63:0] vita_time_out, vita_time_accum;
always @(posedge clk) begin
if (reset | clear) begin
vt_state <= VT_INIT;
end else begin
case (vt_state)
VT_INIT : begin
has_time_clear <= 1'b0;
if (i_reg_tvalid & i_reg_tready & first_header) begin
vita_time_out <= vita_time_in;
vita_time_accum <= vita_time_in;
has_time_out <= has_time_in;
vt_state <= VT_INCREMENT;
end
end
VT_INCREMENT : begin
// Stop sending vita time if user does not send vita time
if (i_reg_tvalid & ~has_time_in) begin
has_time_clear <= 1'b1;
end
if (o_reg_tvalid & o_reg_tready) begin
if (o_reg_tlast) begin
if (has_time_clear) begin
has_time_out <= 1'b0;
end
vita_time_out <= vita_time_accum + n;
end
vita_time_accum <= vita_time_accum + n;
if (last_word_in_burst) begin
vt_state <= VT_INIT;
end
end
end
default : begin
vt_state <= VT_INIT;
end
endcase
end
end
// Create output header
cvita_hdr_encoder cvita_hdr_encoder (
.pkt_type(2'd0), .eob(last_word_in_burst), .has_time(has_time_out),
.seqnum(12'd0), .payload_length(16'd0), // Not needed, handled by AXI Wrapper
.src_sid(src_sid), .dst_sid(dst_sid),
.vita_time(vita_time_out),
.header(o_reg_tuser));
/********************************************************
** Register input stream from user and output stream
********************************************************/
assign o_reg_tlast = o_reg_tlast_int |
// End of packet
(out_payload_cnt == payload_length_out) |
// EOB, could be a partial packet
last_word_in_burst;
axi_fifo_flop #(.WIDTH(WIDTH+1)) axi_fifo_flop_from_user_0 (
.clk(clk), .reset(reset), .clear(clear),
// FIXME: If user asserts tlast at the wrong time, it likely causes a deadlock. For now ignore tlast.
//.i_tdata({s_axis_data_tlast,s_axis_data_tdata}), .i_tvalid(s_axis_data_tvalid), .i_tready(s_axis_data_tready),
.i_tdata({1'b0,s_axis_data_tdata}), .i_tvalid(s_axis_data_tvalid), .i_tready(s_axis_data_tready),
.o_tdata({o_reg_tlast_int,o_reg_tdata}), .o_tvalid(o_reg_tvalid), .o_tready(o_reg_tready),
.space(), .occupied());
// Output register with header
axi_fifo_flop #(.WIDTH(WIDTH+1+128)) axi_fifo_flop_output (
.clk(clk), .reset(reset), .clear(clear),
.i_tdata({o_reg_tlast,o_reg_tdata,o_reg_tuser}), .i_tvalid(o_reg_tvalid), .i_tready(o_reg_tready),
.o_tdata({o_tlast,o_tdata,o_tuser}), .o_tvalid(o_tvalid), .o_tready(o_tready),
.space(), .occupied());
/********************************************************
** Error / warning signals
********************************************************/
reg [23:0] counter_header_fifo_full, counter_throttle, counter_drop_pkt_lockup;
reg [2:0] counter_header_fifo_empty;
always @(posedge clk) begin
if (reset) begin
warning_long_throttle <= 1'b0;
error_extra_outputs <= 1'b0;
error_drop_pkt_lockup <= 1'b0;
counter_throttle <= 0;
counter_header_fifo_full <= 0;
counter_drop_pkt_lockup <= 0;
counter_header_fifo_empty <= 0;
end else begin
// In throttle state for a "long" time
if (throttle) begin
counter_throttle <= counter_throttle + 1;
if (counter_throttle == 2**24-1) begin
warning_long_throttle <= 1'b1;
end
end else begin
counter_throttle <= 0;
end
// More than M outputs per N inputs
if (word_cnt_div_n_fifo_tvalid & (word_cnt_div_m > word_cnt_div_n_fifo_tdata)) begin
error_extra_outputs <= 1'b1;
end
// Bad internal state. AXI drop partial packet is in a lockup condition.
if (~i_reg_tready_int & m_axis_data_tready) begin
counter_drop_pkt_lockup <= counter_drop_pkt_lockup + 1;
if (counter_drop_pkt_lockup == 2**24-1) begin
error_drop_pkt_lockup <= 1'b1;
end
end else begin
counter_drop_pkt_lockup <= 0;
end
end
end
endmodule
|