1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//! RFNoC specific digital up-conversion chain
// High level block diagram:
//
// HB1 -> HB2 -> CIC -> CORDIC -> Scaler
// We don't care about framing here, hence no tlast
module duc #(
parameter SR_PHASE_INC_ADDR = 0,
parameter SR_SCALE_ADDR = 1,
parameter SR_INTERP_ADDR = 2,
parameter NUM_HB = 2,
parameter CIC_MAX_INTERP = 128
)(
input clk, input reset, input clear,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input [31:0] i_tdata, input [127:0] i_tuser, input i_tvalid, output i_tready,
output [31:0] o_tdata, output [127:0] o_tuser, output o_tvalid, input o_tready
);
localparam RESET_DELAY = 3;
localparam WIDTH = 16; // Input/output bitwidth of the module
localparam CWIDTH = 24; // Internal bitwidth needed for CORDIC accuracy
localparam PWIDTH = 32; // Phase accumulator bitwidth
reg [1:0] hb_rate; // Current Halfband rate
reg [7:0] cic_interp_rate; // Current CIC rate
wire [1:0] hb_rate_int;
wire [7:0] cic_interp_rate_int;
wire [2*CWIDTH-1:0] o_tdata_halfbands; // Halfband output
wire o_tvalid_halfbands;
wire rate_changed; // Rate changed by the settings registers
wire reset_on_change; // Reset the halfbands and the cic everytime there is a rate change
wire reset_on_live_change; // Reset when rate changes while streaming
wire [PWIDTH-1:0] o_tdata_phase;
wire o_tvalid_phase;
wire o_tlast_phase;
wire i_tready_phase;
wire [17:0] scale_factor;
/**************************************************************************
* Settings registers
**************************************************************************/
// AXI settings bus for phase values
axi_setting_reg #(
.ADDR(SR_PHASE_INC_ADDR), .AWIDTH(8), .WIDTH(PWIDTH), .STROBE_LAST(1), .REPEATS(1))
axi_sr_phase (
.clk(clk), .reset(reset),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.o_tdata(o_tdata_phase), .o_tlast(o_tlast_phase), .o_tvalid(o_tvalid_phase), .o_tready(i_tready_phase));
// AXI settings bus for scale
setting_reg #(.my_addr(SR_SCALE_ADDR), .width(18)) sr_scale (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
// AXI settings bus for interpolation rate
setting_reg #(.my_addr(SR_INTERP_ADDR), .width(10), .at_reset(1)) sr_interp
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({hb_rate_int,cic_interp_rate_int}),.changed(rate_changed));
// Changing interpolation rates while processing only when axi_rate_change sends a clear
reg active, rate_changed_hold;
reg [RESET_DELAY-1:0] shift_reset;
always @(posedge clk) begin
if (reset) begin
active <= 1'b0;
rate_changed_hold <= 1'b0;
cic_interp_rate <= 'd1;
hb_rate <= 'd0;
shift_reset <= 'd0;
end else begin
if (clear | reset_on_change) begin
active <= 1'b0;
end else if (i_tready & i_tvalid) begin
active <= 1'b1;
end
if (rate_changed & active) begin
rate_changed_hold <= 1'b1;
end
if ((clear | ~active) & (rate_changed | rate_changed_hold)) begin
rate_changed_hold <= 1'b0;
cic_interp_rate <= cic_interp_rate_int;
hb_rate <= hb_rate_int;
shift_reset <= {shift_reset[RESET_DELAY-1:0], 1'b1};
end else begin
shift_reset <= {shift_reset[RESET_DELAY-1:0], 1'b0};
end
end
end
// Long reset for the halfbands
assign reset_on_change = |shift_reset;
assign reset_on_live_change = (clear | reset_on_change | (~active & rate_changed));
/**************************************************************************
* Halfbands
*************************************************************************/
// Sign extend from 16 to 24 bits to increase the accuracy from the CORDIC
wire [2*CWIDTH-1:0] o_tdata_extd;
sign_extend #(.bits_in(WIDTH), .bits_out(CWIDTH)) sign_extend_in_i (
.in(i_tdata[2*WIDTH-1:WIDTH]), .out(o_tdata_extd[2*CWIDTH-1:CWIDTH]));
sign_extend #(.bits_in(WIDTH), .bits_out(CWIDTH)) sign_extend_in_q (
.in(i_tdata[WIDTH-1:0]), .out(o_tdata_extd[CWIDTH-1:0]));
// Halfband 1 wires
wire i_tready_hb1;
wire [2*CWIDTH-1:0] o_tdata_hb1;
wire o_tvalid_hb1, o_tready_hb1;
// Halfband 2 wires
wire i_tready_hb2;
wire [2*CWIDTH-1:0] o_tdata_hb2;
wire o_tvalid_hb2, o_tready_hb2;
// Halfband 3 wires
wire i_tready_hb3;
wire [2*CWIDTH-1:0] o_tdata_hb3;
wire o_tvalid_hb3, o_tready_hb3;
generate
if( NUM_HB > 0 ) begin
axi_hb47 halfband1 (
.aclk(clk),
.aresetn(~(reset | clear | reset_on_change)),
.s_axis_data_tvalid(i_tvalid),
.s_axis_data_tready(i_tready_hb1),
.s_axis_data_tdata(o_tdata_extd),
.m_axis_data_tvalid(o_tvalid_hb1),
.m_axis_data_tready(o_tready_hb1),
.m_axis_data_tdata(o_tdata_hb1)
);
end else begin
assign o_tdata_hb1 = 'h0;
assign o_tvalid_hb1 = 1'h0;
assign i_tready_hb1 = 1'b0;
end
if( NUM_HB > 1 ) begin
axi_hb47 halfband2 (
.aclk(clk),
.aresetn(~(reset | clear | reset_on_change)),
.s_axis_data_tvalid(o_tvalid_hb1),
.s_axis_data_tready(i_tready_hb2),
.s_axis_data_tdata({o_tdata_hb1[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb1[CWIDTH-1:0] << 2}),
.m_axis_data_tvalid(o_tvalid_hb2),
.m_axis_data_tready(o_tready_hb2),
.m_axis_data_tdata(o_tdata_hb2)
);
end else begin
assign o_tdata_hb2 = 'h0;
assign o_tvalid_hb2 = 1'h0;
assign i_tready_hb2 = 1'b0;
end
if( NUM_HB > 2 ) begin
axi_hb47 halfband3 (
.aclk(clk),
.aresetn(~(reset | clear | reset_on_change)),
.s_axis_data_tvalid(o_tvalid_hb2),
.s_axis_data_tready(i_tready_hb3),
.s_axis_data_tdata({o_tdata_hb2[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb2[CWIDTH-1:0] << 2}),
.m_axis_data_tvalid(o_tvalid_hb3),
.m_axis_data_tready(o_tready_hb3),
.m_axis_data_tdata(o_tdata_hb3)
);
end else begin
assign o_tdata_hb3 = 'h0;
assign o_tvalid_hb3 = 1'h0;
assign i_tready_hb3 = 1'b0;
end
endgenerate
/**************************************************************************
* Halfband selection multiplexing
*************************************************************************/
wire [2*CWIDTH-1:0] o_tdata_cic;
wire [2*CWIDTH-1:0] o_cic;
wire o_tvalid_cic, i_tready_cic;
wire o_tready_cic;
assign o_tdata_halfbands = (hb_rate == 2'b0) ? o_tdata_extd :
(hb_rate == 2'b1) ? {o_tdata_hb1[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb1[CWIDTH-1:0] << 2} :
(hb_rate == 2'b10) ? {o_tdata_hb2[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb2[CWIDTH-1:0] << 2} :
{o_tdata_hb3[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb3[CWIDTH-1:0] << 2};
// Clearing valid on rate change as the halfbands take 2 cycles to clear
assign o_tvalid_halfbands = reset_on_live_change ? 1'b0 :
(hb_rate == 2'b0) ? i_tvalid :
(hb_rate == 2'b1) ? o_tvalid_hb1 :
(hb_rate == 2'b10) ? o_tvalid_hb2 :
o_tvalid_hb3;
// Throttle input data while rate change is going on
assign i_tready = reset_on_live_change ? 1'b0 :
(hb_rate == 2'b0) ? i_tready_cic :
i_tready_hb1;
assign o_tready_hb1 = reset_on_live_change ? 1'b0 :
(hb_rate == 2'b1) ? i_tready_cic :
i_tready_hb2;
assign o_tready_hb2 = reset_on_live_change ? 1'b0 :
(hb_rate == 2'b10) ? i_tready_cic :
i_tready_hb3;
assign o_tready_hb3 = reset_on_live_change ? 1'b0 : i_tready_cic;
/**************************************************************************
* Ettus CIC; the Xilinx CIC has a minimum interpolation of 4,
* so we use the strobed version and convert to and from AXI.
*************************************************************************/
wire to_cic_stb, from_cic_stb;
wire [2*CWIDTH-1:0] to_cic_data;
wire [CWIDTH-1:0] i_cic;
wire [CWIDTH-1:0] q_cic;
// Convert from AXI to strobed and back to AXI again for the CIC interpolation module
axi_to_strobed #(.WIDTH(2*CWIDTH), .FIFO_SIZE(1), .MIN_RATE(128)) axi_to_strobed (
.clk(clk), .reset(reset | reset_on_change), .clear(clear),
.out_rate(cic_interp_rate), .ready(i_tready_cartesian & o_tready), .error(),
.i_tdata(o_tdata_halfbands), .i_tvalid(o_tvalid_halfbands), .i_tlast(1'b0), .i_tready(i_tready_cic),
.out_stb(to_cic_stb), .out_last(), .out_data(to_cic_data)
);
cic_interpolate #(.WIDTH(CWIDTH), .N(4), .MAX_RATE(CIC_MAX_INTERP)) cic_interpolate_i (
.clk(clk), .reset(reset | clear | reset_on_change),
.rate_stb(reset_on_change),
.rate(cic_interp_rate), .strobe_in(to_cic_stb), .strobe_out(from_cic_stb),
.signal_in(to_cic_data[2*CWIDTH-1:CWIDTH]), .signal_out(i_cic)
);
cic_interpolate #(.WIDTH(CWIDTH), .N(4), .MAX_RATE(CIC_MAX_INTERP)) cic_interpolate_q (
.clk(clk), .reset(reset | clear | reset_on_change),
.rate_stb(reset_on_change),
.rate(cic_interp_rate), .strobe_in(to_cic_stb), .strobe_out(),
.signal_in(to_cic_data[CWIDTH-1:0]), .signal_out(q_cic)
);
assign o_cic = {i_cic, q_cic};
//FIFO_SIZE = 8 infers a bram fifo
strobed_to_axi #(.WIDTH(2*CWIDTH), .FIFO_SIZE(8)) strobed_to_axi (
.clk(clk), .reset(reset | reset_on_change), .clear(clear),
.in_stb(from_cic_stb), .in_data(o_cic), .in_last(1'b0),
.o_tdata(o_tdata_cic), .o_tvalid(o_tvalid_cic), .o_tlast(), .o_tready(o_tready_cic)
);
/**************************************************************************
* Clip back to 16 bits
*************************************************************************/
wire o_tvalid_clip;
axi_round_and_clip_complex #(
.WIDTH_IN(CWIDTH), .WIDTH_OUT(WIDTH), .CLIP_BITS(CWIDTH-WIDTH)) // No rounding, all clip
axi_round_and_clip_complex (
.clk(clk), .reset(reset | clear | reset_on_change),
.i_tdata(o_tdata_cic), .i_tlast(1'b0), .i_tvalid(o_tvalid_cic), .i_tready(o_tready_cic),
.o_tdata(o_tdata), .o_tlast(), .o_tvalid(o_tvalid_clip), .o_tready(i_tready_cartesian));
assign o_tvalid = reset_on_live_change ? 1'b0 : o_tvalid_clip;
assign i_tready_cartesian = reset_on_live_change ? 1'b0 : o_tready;
// Note: To facilitate timed CORDIC tunes, the code has been moved outside
// the duc module to cordic_timed.v.
endmodule // duc
|