1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*
* f15_histo_mem.v
*
* Histogram State storage. Basically a memory with 2 R/W ports where
* each port can do read & write at different address at the same time
* if those address are inteleaved (like read at odd address when writing
* to even address).
*
* This allows two independent process to do READ/MODIFY/WRITE.
*
* Copyright (C) 2014 Ettus Corporation LLC
* Copyright 2018 Ettus Research, a National Instruments Company
*
* SPDX-License-Identifier: LGPL-3.0-or-later
*
* vim: ts=4 sw=4
*/
`ifdef SIM
`default_nettype none
`endif
module f15_histo_mem #(
parameter integer ADDR_WIDTH = 16
)(
// Port A Read
input wire [ADDR_WIDTH-1:0] addr_AR,
output reg [8:0] data_AR,
input wire ena_AR,
// Port A Write
input wire [ADDR_WIDTH-1:0] addr_AW,
input wire [8:0] data_AW,
input wire ena_AW,
// Port B Read
input wire [ADDR_WIDTH-1:0] addr_BR,
output reg [8:0] data_BR,
input wire ena_BR,
// Port B Write
input wire [ADDR_WIDTH-1:0] addr_BW,
input wire [8:0] data_BW,
input wire ena_BW,
// Error detection
output reg conflict_A,
output reg conflict_B,
// Common
input wire clk,
input wire rst
);
// Signals
// Memory banks IF
wire [ADDR_WIDTH-2:0] even_addra, odd_addra;
wire [ADDR_WIDTH-2:0] even_addrb, odd_addrb;
wire [8:0] even_dia, odd_dia;
wire [8:0] even_dib, odd_dib;
wire [8:0] even_doa, odd_doa;
wire [8:0] even_dob, odd_dob;
wire even_wea, odd_wea;
wire even_web, odd_web;
wire even_rea, odd_rea;
wire even_reb, odd_reb;
// Control
wire sel_A, sel_B;
// Mux selection
assign sel_A = ena_AR ? addr_AR[0] : ~addr_AW[0];
assign sel_B = ena_BR ? addr_BR[0] : ~addr_BW[0];
// Conflict detection
always @(posedge clk)
begin
conflict_A <= !(addr_AR[0] ^ addr_AW[0]) & ena_AR & ena_AW;
conflict_B <= !(addr_BR[0] ^ addr_BW[0]) & ena_BR & ena_BW;
end
// Control signals
assign even_wea = sel_A & ena_AW;
assign odd_wea = !sel_A & ena_AW;
assign even_web = sel_B & ena_BW;
assign odd_web = !sel_B & ena_BW;
assign even_rea = !sel_A & ena_AR;
assign odd_rea = sel_A & ena_AR;
assign even_reb = !sel_B & ena_BR;
assign odd_reb = sel_B & ena_BR;
// Address path mapping
assign even_addra = sel_A ? addr_AW[ADDR_WIDTH-1:1] : addr_AR[ADDR_WIDTH-1:1];
assign even_addrb = sel_B ? addr_BW[ADDR_WIDTH-1:1] : addr_BR[ADDR_WIDTH-1:1];
assign odd_addra = sel_A ? addr_AR[ADDR_WIDTH-1:1] : addr_AW[ADDR_WIDTH-1:1];
assign odd_addrb = sel_B ? addr_BR[ADDR_WIDTH-1:1] : addr_BW[ADDR_WIDTH-1:1];
// Data path mapping
assign even_dia = data_AW;
assign odd_dia = data_AW;
assign even_dib = data_BW;
assign odd_dib = data_BW;
always @(posedge clk)
begin
data_AR <= even_doa | odd_doa;
data_BR <= even_dob | odd_dob;
end
// Instanciate memory banks
f15_histo_mem_bank #(
.ADDR_WIDTH(ADDR_WIDTH-1)
) mem_even (
.addra(even_addra),
.addrb(even_addrb),
.dia(even_dia),
.dib(even_dib),
.doa(even_doa),
.dob(even_dob),
.wea(even_wea),
.web(even_web),
.rea(even_rea),
.reb(even_reb),
.clk(clk),
.rst(rst)
);
f15_histo_mem_bank #(
.ADDR_WIDTH(ADDR_WIDTH-1)
) mem_odd (
.addra(odd_addra),
.addrb(odd_addrb),
.dia(odd_dia),
.dib(odd_dib),
.doa(odd_doa),
.dob(odd_dob),
.wea(odd_wea),
.web(odd_web),
.rea(odd_rea),
.reb(odd_reb),
.clk(clk),
.rst(rst)
);
endmodule // f15_histo_mem
module f15_histo_mem_bank #(
parameter integer ADDR_WIDTH = 15
)(
input wire [ADDR_WIDTH-1:0] addra,
input wire [ADDR_WIDTH-1:0] addrb,
input wire [8:0] dia,
input wire [8:0] dib,
output reg [8:0] doa,
output reg [8:0] dob,
input wire wea,
input wire web,
input wire rea,
input wire reb,
input wire clk,
input wire rst
);
localparam integer N_BRAMS = 1 << (ADDR_WIDTH - 12);
genvar i;
integer j;
// Signals
// Direct RAM connections
wire [15:0] ramb_addra;
wire [15:0] ramb_addrb;
wire [31:0] ramb_dia;
wire [31:0] ramb_dib;
wire [ 3:0] ramb_dipa;
wire [ 3:0] ramb_dipb;
wire [31:0] ramb_doa[0:N_BRAMS-1];
wire [31:0] ramb_dob[0:N_BRAMS-1];
wire [ 3:0] ramb_dopa[0:N_BRAMS-1];
wire [ 3:0] ramb_dopb[0:N_BRAMS-1];
wire ramb_wea[0:N_BRAMS-1];
wire ramb_web[0:N_BRAMS-1];
reg ramb_rstdoa[0:N_BRAMS-1];
reg ramb_rstdob[0:N_BRAMS-1];
// Control
reg onehota[0:N_BRAMS-1];
reg onehotb[0:N_BRAMS-1];
// Map address LSB and data inputs
assign ramb_addra = { 1'b0, addra[11:0], 3'b000 };
assign ramb_addrb = { 1'b0, addrb[11:0], 3'b000 };
assign ramb_dia = { 16'h0000, dia[8:1] };
assign ramb_dib = { 16'h0000, dib[8:1] };
assign ramb_dipa = { 3'b000, dia[0] };
assign ramb_dipb = { 3'b000, dib[0] };
// OR all the RAMB outputs
always @*
begin
doa = 9'h0;
dob = 9'h0;
for (j=0; j<N_BRAMS; j=j+1) begin
doa = doa | { ramb_doa[j][7:0], ramb_dopa[j][0] };
dob = dob | { ramb_dob[j][7:0], ramb_dopb[j][0] };
end
end
// Generate array
generate
for (i=0; i<N_BRAMS; i=i+1) begin
// Decode address MSB to one-hot signal
always @(addra,addrb)
begin
onehota[i] <= (addra[ADDR_WIDTH-1:12] == i) ? 1'b1 : 1'b0;
onehotb[i] <= (addrb[ADDR_WIDTH-1:12] == i) ? 1'b1 : 1'b0;
end
// If no read, then reset the output reg to zero
always @(posedge clk)
begin
ramb_rstdoa[i] <= !(onehota[i] & rea);
ramb_rstdob[i] <= !(onehotb[i] & reb);
end
// Mask the write enable with decoded address
assign ramb_wea[i] = onehota[i] & wea;
assign ramb_web[i] = onehotb[i] & web;
// Instantiate RAM Block
RAMB36E1 #(
.RDADDR_COLLISION_HWCONFIG("PERFORMANCE"),
.SIM_COLLISION_CHECK("NONE"),
.DOA_REG(1),
.DOB_REG(1),
.EN_ECC_READ("FALSE"),
.EN_ECC_WRITE("FALSE"),
.RAM_EXTENSION_A("NONE"),
.RAM_EXTENSION_B("NONE"),
.RAM_MODE("TDP"),
.READ_WIDTH_A(9),
.READ_WIDTH_B(9),
.WRITE_WIDTH_A(9),
.WRITE_WIDTH_B(9),
.RSTREG_PRIORITY_A("RSTREG"),
.RSTREG_PRIORITY_B("RSTREG"),
.SIM_DEVICE("7SERIES"),
.SRVAL_A(36'h000000000),
.SRVAL_B(36'h000000000),
.WRITE_MODE_A("READ_FIRST"),
.WRITE_MODE_B("READ_FIRST")
)
mem_elem_I (
.DOADO(ramb_doa[i]),
.DOPADOP(ramb_dopa[i]),
.DOBDO(ramb_dob[i]),
.DOPBDOP(ramb_dopb[i]),
.CASCADEINA(1'b0),
.CASCADEINB(1'b0),
.INJECTDBITERR(1'b0),
.INJECTSBITERR(1'b0),
.ADDRARDADDR(ramb_addra),
.CLKARDCLK(clk),
.ENARDEN(1'b1),
.REGCEAREGCE(1'b1),
.RSTRAMARSTRAM(rst),
.RSTREGARSTREG(ramb_rstdoa[i]),
.WEA({3'b0, ramb_wea[i]}),
.DIADI(ramb_dia),
.DIPADIP(ramb_dipa),
.ADDRBWRADDR(ramb_addrb),
.CLKBWRCLK(clk),
.ENBWREN(1'b1),
.REGCEB(1'b1),
.RSTRAMB(rst),
.RSTREGB(ramb_rstdob[i]),
.WEBWE({7'b0, ramb_web[i]}),
.DIBDI(ramb_dib),
.DIPBDIP(ramb_dipb)
);
end
endgenerate
endmodule // f15_histo_mem_bank
|