1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
//
// Copyright 2014-2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
module noc_block_fft #(
parameter EN_MAGNITUDE_OUT = 0, // CORDIC based magnitude calculation
parameter EN_MAGNITUDE_APPROX_OUT = 1, // Multiplier-less, lower resource usage
parameter EN_MAGNITUDE_SQ_OUT = 1, // Magnitude squared
parameter EN_FFT_SHIFT = 1, // Center zero frequency bin
parameter NOC_ID = 64'hFF70_0000_0000_0000,
parameter STR_SINK_FIFOSIZE = 11)
(
input bus_clk, input bus_rst,
input ce_clk, input ce_rst,
input [63:0] i_tdata, input i_tlast, input i_tvalid, output i_tready,
output [63:0] o_tdata, output o_tlast, output o_tvalid, input o_tready,
output [63:0] debug
);
////////////////////////////////////////////////////////////
//
// RFNoC Shell
//
////////////////////////////////////////////////////////////
wire [31:0] set_data;
wire [7:0] set_addr;
wire set_stb;
reg [63:0] rb_data;
wire [7:0] rb_addr;
wire [63:0] cmdout_tdata, ackin_tdata;
wire cmdout_tlast, cmdout_tvalid, cmdout_tready, ackin_tlast, ackin_tvalid, ackin_tready;
wire [63:0] str_sink_tdata, str_src_tdata;
wire str_sink_tlast, str_sink_tvalid, str_sink_tready, str_src_tlast, str_src_tvalid, str_src_tready;
wire clear_tx_seqnum;
wire [15:0] next_dst_sid;
noc_shell #(
.NOC_ID(NOC_ID),
.STR_SINK_FIFOSIZE(STR_SINK_FIFOSIZE))
noc_shell (
.bus_clk(bus_clk), .bus_rst(bus_rst),
.i_tdata(i_tdata), .i_tlast(i_tlast), .i_tvalid(i_tvalid), .i_tready(i_tready),
.o_tdata(o_tdata), .o_tlast(o_tlast), .o_tvalid(o_tvalid), .o_tready(o_tready),
// Computer Engine Clock Domain
.clk(ce_clk), .reset(ce_rst),
// Control Sink
.set_data(set_data), .set_addr(set_addr), .set_stb(set_stb), .set_time(), .set_has_time(),
.rb_stb(1'b1), .rb_data(rb_data), .rb_addr(rb_addr),
// Control Source
.cmdout_tdata(cmdout_tdata), .cmdout_tlast(cmdout_tlast), .cmdout_tvalid(cmdout_tvalid), .cmdout_tready(cmdout_tready),
.ackin_tdata(ackin_tdata), .ackin_tlast(ackin_tlast), .ackin_tvalid(ackin_tvalid), .ackin_tready(ackin_tready),
// Stream Sink
.str_sink_tdata(str_sink_tdata), .str_sink_tlast(str_sink_tlast), .str_sink_tvalid(str_sink_tvalid), .str_sink_tready(str_sink_tready),
// Stream Source
.str_src_tdata(str_src_tdata), .str_src_tlast(str_src_tlast), .str_src_tvalid(str_src_tvalid), .str_src_tready(str_src_tready),
// Misc
.vita_time(64'd0), .clear_tx_seqnum(clear_tx_seqnum),
.src_sid(), .next_dst_sid(next_dst_sid), .resp_in_dst_sid(), .resp_out_dst_sid(),
.debug(debug));
////////////////////////////////////////////////////////////
//
// AXI Wrapper
// Convert RFNoC Shell interface into AXI stream interface
//
////////////////////////////////////////////////////////////
wire [31:0] m_axis_data_tdata;
wire m_axis_data_tlast;
wire m_axis_data_tvalid;
wire m_axis_data_tready;
wire [31:0] s_axis_data_tdata;
wire s_axis_data_tlast;
wire s_axis_data_tvalid;
wire s_axis_data_tready;
axi_wrapper #(
.SIMPLE_MODE(1))
inst_axi_wrapper (
.bus_clk(bus_clk), .bus_rst(bus_rst),
.clk(ce_clk), .reset(ce_rst),
.clear_tx_seqnum(clear_tx_seqnum),
.next_dst(next_dst_sid),
.set_stb(), .set_addr(), .set_data(),
.i_tdata(str_sink_tdata), .i_tlast(str_sink_tlast), .i_tvalid(str_sink_tvalid), .i_tready(str_sink_tready),
.o_tdata(str_src_tdata), .o_tlast(str_src_tlast), .o_tvalid(str_src_tvalid), .o_tready(str_src_tready),
.m_axis_data_tdata(m_axis_data_tdata),
.m_axis_data_tlast(m_axis_data_tlast),
.m_axis_data_tvalid(m_axis_data_tvalid),
.m_axis_data_tready(m_axis_data_tready),
.m_axis_data_tuser(),
.s_axis_data_tdata(s_axis_data_tdata),
.s_axis_data_tlast(s_axis_data_tlast),
.s_axis_data_tvalid(s_axis_data_tvalid),
.s_axis_data_tready(s_axis_data_tready),
.s_axis_data_tuser(),
.m_axis_config_tdata(),
.m_axis_config_tlast(),
.m_axis_config_tvalid(),
.m_axis_config_tready(),
.m_axis_pkt_len_tdata(),
.m_axis_pkt_len_tvalid(),
.m_axis_pkt_len_tready());
////////////////////////////////////////////////////////////
//
// User code
//
////////////////////////////////////////////////////////////
// Control Source Unused
assign cmdout_tdata = 64'd0;
assign cmdout_tlast = 1'b0;
assign cmdout_tvalid = 1'b0;
assign ackin_tready = 1'b1;
localparam MAX_FFT_SIZE_LOG2 = 11;
localparam [31:0] SR_FFT_RESET = 131;
localparam [31:0] SR_FFT_SIZE_LOG2 = 132;
localparam [31:0] SR_MAGNITUDE_OUT = 133;
localparam [31:0] SR_FFT_DIRECTION = 134;
localparam [31:0] SR_FFT_SCALING = 135;
localparam [31:0] SR_FFT_SHIFT_CONFIG = 136;
// FFT Output
localparam [1:0] COMPLEX_OUT = 0;
localparam [1:0] MAG_OUT = 1;
localparam [1:0] MAG_SQ_OUT = 2;
// FFT Direction
localparam [0:0] FFT_REVERSE = 0;
localparam [0:0] FFT_FORWARD = 1;
wire [1:0] magnitude_out;
wire [31:0] fft_data_o_tdata;
wire fft_data_o_tlast;
wire fft_data_o_tvalid;
wire fft_data_o_tready;
wire [15:0] fft_data_o_tuser;
wire [31:0] fft_shift_o_tdata;
wire fft_shift_o_tlast;
wire fft_shift_o_tvalid;
wire fft_shift_o_tready;
wire [31:0] fft_mag_i_tdata, fft_mag_o_tdata, fft_mag_o_tdata_int;
wire fft_mag_i_tlast, fft_mag_o_tlast;
wire fft_mag_i_tvalid, fft_mag_o_tvalid;
wire fft_mag_i_tready, fft_mag_o_tready;
wire [31:0] fft_mag_sq_i_tdata, fft_mag_sq_o_tdata;
wire fft_mag_sq_i_tlast, fft_mag_sq_o_tlast;
wire fft_mag_sq_i_tvalid, fft_mag_sq_o_tvalid;
wire fft_mag_sq_i_tready, fft_mag_sq_o_tready;
wire [31:0] fft_mag_round_i_tdata, fft_mag_round_o_tdata;
wire fft_mag_round_i_tlast, fft_mag_round_o_tlast;
wire fft_mag_round_i_tvalid, fft_mag_round_o_tvalid;
wire fft_mag_round_i_tready, fft_mag_round_o_tready;
// Settings Registers
wire fft_reset;
setting_reg #(
.my_addr(SR_FFT_RESET), .awidth(8), .width(1))
sr_fft_reset (
.clk(ce_clk), .rst(ce_rst),
.strobe(set_stb), .addr(set_addr), .in(set_data), .out(fft_reset), .changed());
// Two instances of FFT size register, one for FFT core and one for FFT shift
localparam DEFAULT_FFT_SIZE = 8; // 256
wire [7:0] fft_size_log2_tdata ,fft_core_size_log2_tdata;
wire fft_size_log2_tvalid, fft_core_size_log2_tvalid, fft_size_log2_tready, fft_core_size_log2_tready;
axi_setting_reg #(
.ADDR(SR_FFT_SIZE_LOG2), .AWIDTH(8), .WIDTH(8), .DATA_AT_RESET(DEFAULT_FFT_SIZE), .VALID_AT_RESET(1))
sr_fft_size_log2 (
.clk(ce_clk), .reset(ce_rst),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.o_tdata(fft_size_log2_tdata), .o_tlast(), .o_tvalid(fft_size_log2_tvalid), .o_tready(fft_size_log2_tready));
axi_setting_reg #(
.ADDR(SR_FFT_SIZE_LOG2), .AWIDTH(8), .WIDTH(8), .DATA_AT_RESET(DEFAULT_FFT_SIZE), .VALID_AT_RESET(1))
sr_fft_size_log2_2 (
.clk(ce_clk), .reset(ce_rst),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.o_tdata(fft_core_size_log2_tdata), .o_tlast(), .o_tvalid(fft_core_size_log2_tvalid), .o_tready(fft_core_size_log2_tready));
// Forward = 0, Reverse = 1
localparam DEFAULT_FFT_DIRECTION = 0;
wire fft_direction_tdata;
wire fft_direction_tvalid, fft_direction_tready;
axi_setting_reg #(
.ADDR(SR_FFT_DIRECTION), .AWIDTH(8), .WIDTH(1), .DATA_AT_RESET(DEFAULT_FFT_DIRECTION), .VALID_AT_RESET(1))
sr_fft_direction (
.clk(ce_clk), .reset(ce_rst),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.o_tdata(fft_direction_tdata), .o_tlast(), .o_tvalid(fft_direction_tvalid), .o_tready(fft_direction_tready));
localparam [11:0] DEFAULT_FFT_SCALING = 12'b011010101010; // Conservative 1/N scaling
wire [11:0] fft_scaling_tdata;
wire fft_scaling_tvalid, fft_scaling_tready;
axi_setting_reg #(
.ADDR(SR_FFT_SCALING), .AWIDTH(8), .WIDTH(12), .DATA_AT_RESET(DEFAULT_FFT_SCALING), .VALID_AT_RESET(1))
sr_fft_scaling (
.clk(ce_clk), .reset(ce_rst),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.o_tdata(fft_scaling_tdata), .o_tlast(), .o_tvalid(fft_scaling_tvalid), .o_tready(fft_scaling_tready));
wire [1:0] fft_shift_config_tdata;
wire fft_shift_config_tvalid, fft_shift_config_tready;
axi_setting_reg #(
.ADDR(SR_FFT_SHIFT_CONFIG), .AWIDTH(8), .WIDTH(2))
sr_fft_shift_config (
.clk(ce_clk), .reset(ce_rst),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.o_tdata(fft_shift_config_tdata), .o_tlast(), .o_tvalid(fft_shift_config_tvalid), .o_tready(fft_shift_config_tready));
// Synchronize writing configuration to the FFT core
reg fft_config_ready;
wire fft_config_write = fft_config_ready & m_axis_data_tvalid & m_axis_data_tready;
always @(posedge ce_clk) begin
if (ce_rst | fft_reset) begin
fft_config_ready <= 1'b1;
end else begin
if (fft_config_write) begin
fft_config_ready <= 1'b0;
end else if (m_axis_data_tlast) begin
fft_config_ready <= 1'b1;
end
end
end
wire [23:0] fft_config_tdata = {3'd0, fft_scaling_tdata, fft_direction_tdata, fft_core_size_log2_tdata};
wire fft_config_tvalid = fft_config_write & (fft_scaling_tvalid | fft_direction_tvalid | fft_core_size_log2_tvalid);
wire fft_config_tready;
assign fft_core_size_log2_tready = fft_config_tready & fft_config_write;
assign fft_direction_tready = fft_config_tready & fft_config_write;
assign fft_scaling_tready = fft_config_tready & fft_config_write;
axi_fft inst_axi_fft (
.aclk(ce_clk), .aresetn(~(ce_rst | fft_reset)),
.s_axis_data_tvalid(m_axis_data_tvalid),
.s_axis_data_tready(m_axis_data_tready),
.s_axis_data_tlast(m_axis_data_tlast),
.s_axis_data_tdata({m_axis_data_tdata[15:0],m_axis_data_tdata[31:16]}),
.m_axis_data_tvalid(fft_data_o_tvalid),
.m_axis_data_tready(fft_data_o_tready),
.m_axis_data_tlast(fft_data_o_tlast),
.m_axis_data_tdata({fft_data_o_tdata[15:0],fft_data_o_tdata[31:16]}),
.m_axis_data_tuser(fft_data_o_tuser), // FFT index
.s_axis_config_tdata(fft_config_tdata),
.s_axis_config_tvalid(fft_config_tvalid),
.s_axis_config_tready(fft_config_tready),
.event_frame_started(),
.event_tlast_unexpected(),
.event_tlast_missing(),
.event_status_channel_halt(),
.event_data_in_channel_halt(),
.event_data_out_channel_halt());
// Mux control signals
assign fft_shift_o_tready = (magnitude_out == MAG_OUT) ? fft_mag_i_tready :
(magnitude_out == MAG_SQ_OUT) ? fft_mag_sq_i_tready : s_axis_data_tready;
assign fft_mag_i_tvalid = (magnitude_out == MAG_OUT) ? fft_shift_o_tvalid : 1'b0;
assign fft_mag_i_tlast = (magnitude_out == MAG_OUT) ? fft_shift_o_tlast : 1'b0;
assign fft_mag_i_tdata = fft_shift_o_tdata;
assign fft_mag_o_tready = (magnitude_out == MAG_OUT) ? fft_mag_round_i_tready : 1'b0;
assign fft_mag_sq_i_tvalid = (magnitude_out == MAG_SQ_OUT) ? fft_shift_o_tvalid : 1'b0;
assign fft_mag_sq_i_tlast = (magnitude_out == MAG_SQ_OUT) ? fft_shift_o_tlast : 1'b0;
assign fft_mag_sq_i_tdata = fft_shift_o_tdata;
assign fft_mag_sq_o_tready = (magnitude_out == MAG_SQ_OUT) ? fft_mag_round_i_tready : 1'b0;
assign fft_mag_round_i_tvalid = (magnitude_out == MAG_OUT) ? fft_mag_o_tvalid :
(magnitude_out == MAG_SQ_OUT) ? fft_mag_sq_o_tvalid : 1'b0;
assign fft_mag_round_i_tlast = (magnitude_out == MAG_OUT) ? fft_mag_o_tlast :
(magnitude_out == MAG_SQ_OUT) ? fft_mag_sq_o_tlast : 1'b0;
assign fft_mag_round_i_tdata = (magnitude_out == MAG_OUT) ? fft_mag_o_tdata : fft_mag_sq_o_tdata;
assign fft_mag_round_o_tready = s_axis_data_tready;
assign s_axis_data_tvalid = (magnitude_out == MAG_OUT | magnitude_out == MAG_SQ_OUT) ? fft_mag_round_o_tvalid : fft_shift_o_tvalid;
assign s_axis_data_tlast = (magnitude_out == MAG_OUT | magnitude_out == MAG_SQ_OUT) ? fft_mag_round_o_tlast : fft_shift_o_tlast;
assign s_axis_data_tdata = (magnitude_out == MAG_OUT | magnitude_out == MAG_SQ_OUT) ? fft_mag_round_o_tdata : fft_shift_o_tdata;
// Conditionally synth magnitude / magnitude^2 logic
generate
if (EN_MAGNITUDE_OUT | EN_MAGNITUDE_APPROX_OUT | EN_MAGNITUDE_SQ_OUT) begin
setting_reg #(
.my_addr(SR_MAGNITUDE_OUT), .awidth(8), .width(2))
sr_magnitude_out (
.clk(ce_clk), .rst(ce_rst),
.strobe(set_stb), .addr(set_addr), .in(set_data), .out(magnitude_out), .changed());
end else begin
// Magnitude calculation logic not included, so always bypass
assign magnitude_out = 2'd0;
end
if (EN_FFT_SHIFT) begin
fft_shift #(
.MAX_FFT_SIZE_LOG2(MAX_FFT_SIZE_LOG2),
.WIDTH(32))
inst_fft_shift (
.clk(ce_clk), .reset(ce_rst | fft_reset),
.config_tdata(fft_shift_config_tdata),
.config_tvalid(fft_shift_config_tvalid),
.config_tready(fft_shift_config_tready),
.fft_size_log2_tdata(fft_size_log2_tdata[$clog2(MAX_FFT_SIZE_LOG2)-1:0]),
.fft_size_log2_tvalid(fft_size_log2_tvalid),
.fft_size_log2_tready(fft_size_log2_tready),
.i_tdata(fft_data_o_tdata),
.i_tlast(fft_data_o_tlast),
.i_tvalid(fft_data_o_tvalid),
.i_tready(fft_data_o_tready),
.i_tuser(fft_data_o_tuser[MAX_FFT_SIZE_LOG2-1:0]),
.o_tdata(fft_shift_o_tdata),
.o_tlast(fft_shift_o_tlast),
.o_tvalid(fft_shift_o_tvalid),
.o_tready(fft_shift_o_tready));
end else begin
assign fft_shift_o_tdata = fft_data_o_tdata;
assign fft_shift_o_tlast = fft_data_o_tlast;
assign fft_shift_o_tvalid = fft_data_o_tvalid;
assign fft_data_o_tready = fft_shift_o_tready;
end
// More accurate magnitude calculation takes precedence if enabled
if (EN_MAGNITUDE_OUT) begin
complex_to_magphase
inst_complex_to_magphase (
.aclk(ce_clk), .aresetn(~(ce_rst | fft_reset)),
.s_axis_cartesian_tvalid(fft_mag_i_tvalid),
.s_axis_cartesian_tlast(fft_mag_i_tlast),
.s_axis_cartesian_tready(fft_mag_i_tready),
.s_axis_cartesian_tdata(fft_mag_i_tdata),
.m_axis_dout_tvalid(fft_mag_o_tvalid),
.m_axis_dout_tlast(fft_mag_o_tlast),
.m_axis_dout_tdata(fft_mag_o_tdata_int),
.m_axis_dout_tready(fft_mag_o_tready));
assign fft_mag_o_tdata = {1'b0, fft_mag_o_tdata_int[15:0], 15'd0};
end else if (EN_MAGNITUDE_APPROX_OUT) begin
complex_to_mag_approx
inst_complex_to_mag_approx (
.clk(ce_clk), .reset(ce_rst | fft_reset), .clear(1'b0),
.i_tvalid(fft_mag_i_tvalid),
.i_tlast(fft_mag_i_tlast),
.i_tready(fft_mag_i_tready),
.i_tdata(fft_mag_i_tdata),
.o_tvalid(fft_mag_o_tvalid),
.o_tlast(fft_mag_o_tlast),
.o_tready(fft_mag_o_tready),
.o_tdata(fft_mag_o_tdata_int[15:0]));
assign fft_mag_o_tdata = {1'b0, fft_mag_o_tdata_int[15:0], 15'd0};
end else begin
assign fft_mag_o_tdata = fft_mag_i_tdata;
assign fft_mag_o_tlast = fft_mag_i_tlast;
assign fft_mag_o_tvalid = fft_mag_i_tvalid;
assign fft_mag_i_tready = fft_mag_o_tready;
end
if (EN_MAGNITUDE_SQ_OUT) begin
complex_to_magsq
inst_complex_to_magsq (
.clk(ce_clk), .reset(ce_rst | fft_reset), .clear(1'b0),
.i_tvalid(fft_mag_sq_i_tvalid),
.i_tlast(fft_mag_sq_i_tlast),
.i_tready(fft_mag_sq_i_tready),
.i_tdata(fft_mag_sq_i_tdata),
.o_tvalid(fft_mag_sq_o_tvalid),
.o_tlast(fft_mag_sq_o_tlast),
.o_tready(fft_mag_sq_o_tready),
.o_tdata(fft_mag_sq_o_tdata));
end else begin
assign fft_mag_sq_o_tdata = fft_mag_sq_i_tdata;
assign fft_mag_sq_o_tlast = fft_mag_sq_i_tlast;
assign fft_mag_sq_o_tvalid = fft_mag_sq_i_tvalid;
assign fft_mag_sq_i_tready = fft_mag_sq_o_tready;
end
// Convert to SC16
if (EN_MAGNITUDE_OUT | EN_MAGNITUDE_APPROX_OUT | EN_MAGNITUDE_SQ_OUT) begin
axi_round_and_clip #(
.WIDTH_IN(32),
.WIDTH_OUT(16),
.CLIP_BITS(1))
inst_axi_round_and_clip (
.clk(ce_clk), .reset(ce_rst | fft_reset),
.i_tdata(fft_mag_round_i_tdata),
.i_tlast(fft_mag_round_i_tlast),
.i_tvalid(fft_mag_round_i_tvalid),
.i_tready(fft_mag_round_i_tready),
.o_tdata(fft_mag_round_o_tdata[31:16]),
.o_tlast(fft_mag_round_o_tlast),
.o_tvalid(fft_mag_round_o_tvalid),
.o_tready(fft_mag_round_o_tready));
assign fft_mag_round_o_tdata[15:0] = {16{16'd0}};
end else begin
assign fft_mag_round_o_tdata = fft_mag_round_i_tdata;
assign fft_mag_round_o_tlast = fft_mag_round_i_tlast;
assign fft_mag_round_o_tvalid = fft_mag_round_i_tvalid;
assign fft_mag_round_i_tready = fft_mag_round_o_tready;
end
endgenerate
// Readback registers
always @*
case(rb_addr)
3'd0 : rb_data <= {63'd0, fft_reset};
3'd1 : rb_data <= {62'd0, magnitude_out};
3'd2 : rb_data <= {fft_size_log2_tdata};
3'd3 : rb_data <= {63'd0, fft_direction_tdata};
3'd4 : rb_data <= {52'd0, fft_scaling_tdata};
3'd5 : rb_data <= {62'd0, fft_shift_config_tdata};
default : rb_data <= 64'h0BADC0DE0BADC0DE;
endcase
endmodule
|