1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
|
//
// Copyright 2014 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Define MDIO to add support for clause 22 and clause 45 MDIO interface
`define MDIO
// If WB clock is 62.5MHz and max MDC spec is 2.5MHz, then divide by 25
//`define MDC_HALF_PERIOD 13 // Closest int to 12.5
`define MDC_HALF_PERIOD 100
// Registers
`define CPUREG_MDIO_DATA 8'h10
`define CPUREG_MDIO_ADDR 8'h14
`define CPUREG_MDIO_OP 8'h18
`define CPUREG_MDIO_CONTROL 8'h1c
`define CPUREG_MDIO_STATUS 8'h1c
`define CPUREG_GPIO 8'h20
module mdio
(
// Wishbone Bus
input wb_clk_i,
input wb_rst_i,
input [7:0] wb_adr_i,
input [31:0] wb_dat_i,
input wb_we_i,
input wb_stb_i,
input wb_cyc_i,
output reg [31:0] wb_dat_o,
output wb_ack_o,
output reg wb_int_o,
// MDIO
output reg mdc,
output reg mdio_out,
output reg mdio_tri,
input mdio_in
);
//
// State Declarations
//
parameter
IDLE = 0,
PREAMBLE1 = 1,
PREAMBLE2 = 2,
PREAMBLE3 = 3,
PREAMBLE4 = 4,
PREAMBLE5 = 5,
PREAMBLE6 = 6,
PREAMBLE7 = 7,
PREAMBLE8 = 8,
PREAMBLE9 = 9,
PREAMBLE10 = 10,
PREAMBLE11 = 11,
PREAMBLE12 = 12,
PREAMBLE13 = 13,
PREAMBLE14 = 14,
PREAMBLE15 = 15,
PREAMBLE16 = 16,
PREAMBLE17 = 17,
PREAMBLE18 = 18,
PREAMBLE19 = 19,
PREAMBLE20 = 20,
PREAMBLE21 = 21,
PREAMBLE22 = 22,
PREAMBLE23 = 23,
PREAMBLE24 = 24,
PREAMBLE25 = 25,
PREAMBLE26 = 26,
PREAMBLE27 = 27,
PREAMBLE28 = 28,
PREAMBLE29 = 29,
PREAMBLE30 = 30,
PREAMBLE31 = 31,
PREAMBLE32 = 32,
START1 = 33,
C22_START2 = 34,
C45_START2 = 35,
OP1 = 36,
OP2 = 37,
PRTAD1 = 38,
PRTAD2 = 39,
PRTAD3 = 40,
PRTAD4 = 41,
PRTAD5 = 42,
DEVAD1 = 43,
DEVAD2 = 44,
DEVAD3 = 45,
DEVAD4 = 46,
DEVAD5 = 47,
TA1 = 48,
TA2 = 49,
TA3 = 50,
READ1 = 51,
READ2 = 52,
READ3 = 53,
READ4 = 54,
READ5 = 55,
READ6 = 56,
READ7 = 57,
READ8 = 58,
READ9 = 59,
READ10 = 60,
READ11 = 61,
READ12 = 62,
READ13 = 63,
READ14 = 64,
READ15 = 65,
READ16 = 66,
WRITE1 = 67,
WRITE2 = 68,
WRITE3 = 69,
WRITE4 = 70,
WRITE5 = 71,
WRITE6 = 72,
WRITE7 = 73,
WRITE8 = 74,
WRITE9 = 75,
WRITE10 = 76,
WRITE11 = 77,
WRITE12 = 78,
WRITE13 = 79,
WRITE14 = 80,
WRITE15 = 81,
WRITE16 = 82,
C45_ADDR1 = 83,
C45_ADDR2 = 84,
C45_ADDR3 = 85,
C45_ADDR4 = 86,
C45_ADDR5 = 87,
C45_ADDR6 = 88,
C45_ADDR7 = 89,
C45_ADDR8 = 90,
C45_ADDR9 = 91,
C45_ADDR10 = 92,
C45_ADDR11 = 93,
C45_ADDR12 = 94,
C45_ADDR13 = 95,
C45_ADDR14 = 96,
C45_ADDR15 = 97,
C45_ADDR16 = 98,
PREIDLE = 99;
reg cpuack;
reg [15:0] mdio_read_data;
reg [15:0] mdio_write_data;
reg [15:0] mdio_address;
reg [12:0] mdio_operation;
reg mdio_control;
reg [7:0] mdc_clk_count;
reg mdc_falling_edge;
reg mdio_running;
reg mdio_done;
reg [7:0] state;
assign wb_ack_o = cpuack && wb_stb_i;
always @(posedge wb_clk_i or posedge wb_rst_i) begin
if (wb_rst_i == 1'b1) begin
wb_dat_o <= 32'b0;
wb_int_o <= 1'b0;
cpuack <= 1'b0;
mdio_address <= 0;
mdio_operation <= 0;
mdio_write_data <= 0;
mdio_running <= 0;
end
else begin
wb_int_o <= 1'b0;
cpuack <= wb_cyc_i && wb_stb_i;
// Handshake to MDIO state machine to reset running flag in status.
// Wait for falling MDC edge to prevent S/W race condition occuring
// where done flag still asserted but running flag now cleared (repeatedly).
if (mdio_done && mdc_falling_edge)
mdio_running <= 0;
//
// Read access
//
if (wb_cyc_i && wb_stb_i && !wb_we_i) begin
case ({wb_adr_i[7:2], 2'b0})
`CPUREG_MDIO_DATA: begin
wb_dat_o <= {16'b0, mdio_read_data};
end
`CPUREG_MDIO_STATUS: begin
wb_dat_o <= {31'b0, mdio_running};
end
default: begin
end
endcase
end
//
// Write access
//
if (wb_cyc_i && wb_stb_i && wb_we_i) begin
$display("reg write @ addr %x",({wb_adr_i[7:2], 2'b0}));
case ({wb_adr_i[7:2], 2'b0})
`CPUREG_MDIO_DATA: begin
mdio_write_data <= wb_dat_i[15:0];
end
`CPUREG_MDIO_ADDR: begin
mdio_address <= wb_dat_i[15:0];
end
`CPUREG_MDIO_OP: begin
mdio_operation <= wb_dat_i[12:0];
end
`CPUREG_MDIO_CONTROL: begin
// Trigger mdio operation here. Cleared by state machine at end of bus transaction.
if (wb_dat_i[0])
mdio_running <= 1;
end
default: begin
end
endcase
end
end
end // always @ (posedge wb_clk_i or posedge wb_rst_i)
//
// Produce mdc clock as a signal synchronously from Wishbone clock.
//
always @(posedge wb_clk_i or posedge wb_rst_i)
if (wb_rst_i)
begin
mdc_clk_count <= 1;
mdc <= 0;
mdc_falling_edge <= 0;
end
else if (mdc_clk_count == `MDC_HALF_PERIOD)
begin
mdc_clk_count <= 1;
mdc <= ~mdc;
mdc_falling_edge <= mdc;
end
else
begin
mdc_clk_count <= mdc_clk_count + 1;
mdc_falling_edge <= 0;
end
//
// MDIO state machine
//
always @(posedge wb_clk_i or posedge wb_rst_i)
if (wb_rst_i)
begin
mdio_tri <= 1;
mdio_out <= 0;
mdio_done <= 0;
mdio_read_data <= 0;
state <= IDLE;
end
else if (mdc_falling_edge)
//
// This is the MDIO bus controller. Use falling edge of MDC.
//
begin
// Defaults
mdio_tri <= 1;
mdio_out <= 0;
mdio_done <= 0;
case(state)
// IDLE.
// In Clause 22 & 45 the master of the MDIO bus is tristate during idle.
//
IDLE: begin
mdio_tri <= 1;
mdio_out <= 0;
if (mdio_running)
state <= PREAMBLE1;
end
// Preamble. All MDIO transactions begin witrh 32bits of 1 bits as a preamble.
PREAMBLE1: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE2;
end
PREAMBLE2: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE3;
end
PREAMBLE3: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE4;
end
PREAMBLE4: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE5;
end
PREAMBLE5: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE6;
end
PREAMBLE6: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE7;
end
PREAMBLE7: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE8;
end
PREAMBLE8: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE9;
end
PREAMBLE9: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE10;
end
PREAMBLE10: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE11;
end
PREAMBLE11: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE12;
end
PREAMBLE12: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE13;
end
PREAMBLE13: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE14;
end
PREAMBLE14: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE15;
end
PREAMBLE15: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE16;
end
PREAMBLE16: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE17;
end
PREAMBLE17: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE18;
end
PREAMBLE18: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE19;
end
PREAMBLE19: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE20;
end
PREAMBLE20: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE21;
end
PREAMBLE21: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE22;
end
PREAMBLE22: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE23;
end
PREAMBLE23: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE24;
end
PREAMBLE24: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE25;
end
PREAMBLE25: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE26;
end
PREAMBLE26: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE27;
end
PREAMBLE27: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE28;
end
PREAMBLE28: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE29;
end
PREAMBLE29: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE30;
end
PREAMBLE30: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE31;
end
PREAMBLE31: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE32;
end
PREAMBLE32: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= START1;
end
//
// Start code for Clause 22 is 01 and Clause 45 is 00
//
START1: begin
mdio_tri <= 0;
mdio_out <= 0;
if (mdio_operation[12])
// Clause 45 bit set.
state <= C45_START2;
else
state <= C22_START2;
end
//
// 2nd Clause 22 start bit is a 1
//
C22_START2: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= OP1;
end
//
// 2nd Clause 45 start bit is a 0
//
C45_START2: begin
mdio_tri <= 0;
mdio_out <= 0;
state <= OP1;
end
//
// Both Clause 22 & 45 use 2 bits for operation and are compatable.
// Note we don't screen here for illegal Clause 22 ops.
//
OP1: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[11];
state <= OP2;
end
OP2: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[10];
state <= PRTAD1;
end
//
// Both Clause 22 & 45 use 2 sucsessive 5 bit fields to form a hierarchical address
// though it's used slightly different between the 2 standards.
//
PRTAD1: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[9];
state <= PRTAD2;
end
PRTAD2: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[8];
state <= PRTAD3;
end
PRTAD3: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[7];
state <= PRTAD4;
end
PRTAD4: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[6];
state <= PRTAD5;
end
PRTAD5: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[5];
state <= DEVAD1;
end
DEVAD1: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[4];
state <= DEVAD2;
end
DEVAD2: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[3];
state <= DEVAD3;
end
DEVAD3: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[2];
state <= DEVAD4;
end
DEVAD4: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[1];
state <= DEVAD5;
end
DEVAD5: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[0];
state <= TA1;
end
//
// Both Clause 22 & Clause 45 use the same turn around on the bus.
// Reads have Z as the first bit and 0 driven by the slave for the 2nd bit.
// Note that slaves drive the bus on the rising edge of MDC.
// Writes and Address cycles have 10 driven by the master.
//
TA1: begin
// Clause22 write or clause45 write or address go to state TA2
if ((mdio_operation[12:11] == 2'b10) || (mdio_operation[12:11] == 2'b01))
begin
mdio_tri <= 0;
mdio_out <= 1;
state <= TA2;
end
else // Read
begin
mdio_tri <= 1;
state <= TA3;
end
end
TA2: begin
mdio_tri <= 0;
mdio_out <= 0;
if (!mdio_operation[12]) // Clause 22 Write
state <= WRITE1;
else if (mdio_operation[10]) // Clause 45 Write
state <= WRITE1;
else // Clause 45 ADDRESS
state <= C45_ADDR1;
end
TA3: begin
mdio_tri <= 1;
state <= READ1;
end
//
// Clause 22 Reads and both forms of clause 45 Reads have the same bus transaction from here out.
//
READ1: begin
mdio_tri <= 1;
mdio_read_data[15] <= mdio_in;
state <= READ2;
end
READ2: begin
mdio_tri <= 1;
mdio_read_data[14] <= mdio_in;
state <= READ3;
end
READ3: begin
mdio_tri <= 1;
mdio_read_data[13] <= mdio_in;
state <= READ4;
end
READ4: begin
mdio_tri <= 1;
mdio_read_data[12] <= mdio_in;
state <= READ5;
end
READ5: begin
mdio_tri <= 1;
mdio_read_data[11] <= mdio_in;
state <= READ6;
end
READ6: begin
mdio_tri <= 1;
mdio_read_data[10] <= mdio_in;
state <= READ7;
end
READ7: begin
mdio_tri <= 1;
mdio_read_data[9] <= mdio_in;
state <= READ8;
end
READ8: begin
mdio_tri <= 1;
mdio_read_data[8] <= mdio_in;
state <= READ9;
end
READ9: begin
mdio_tri <= 1;
mdio_read_data[7] <= mdio_in;
state <= READ10;
end
READ10: begin
mdio_tri <= 1;
mdio_read_data[6] <= mdio_in;
state <= READ11;
end
READ11: begin
mdio_tri <= 1;
mdio_read_data[5] <= mdio_in;
state <= READ12;
end
READ12: begin
mdio_tri <= 1;
mdio_read_data[4] <= mdio_in;
state <= READ13;
end
READ13: begin
mdio_tri <= 1;
mdio_read_data[3] <= mdio_in;
state <= READ14;
end
READ14: begin
mdio_tri <= 1;
mdio_read_data[2] <= mdio_in;
state <= READ15;
end
READ15: begin
mdio_tri <= 1;
mdio_read_data[1] <= mdio_in;
state <= READ16;
end
READ16: begin
mdio_tri <= 1;
mdio_read_data[0] <= mdio_in;
state <= PREIDLE;
mdio_done <= 1;
end
//
// Write 16bits of data for all types of Write.
//
WRITE1:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[15];
state <= WRITE2;
end
WRITE2:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[14];
state <= WRITE3;
end
WRITE3:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[13];
state <= WRITE4;
end
WRITE4:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[12];
state <= WRITE5;
end
WRITE5:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[11];
state <= WRITE6;
end
WRITE6:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[10];
state <= WRITE7;
end
WRITE7:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[9];
state <= WRITE8;
end
WRITE8:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[8];
state <= WRITE9;
end
WRITE9:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[7];
state <= WRITE10;
end
WRITE10:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[6];
state <= WRITE11;
end
WRITE11:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[5];
state <= WRITE12;
end
WRITE12:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[4];
state <= WRITE13;
end
WRITE13:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[3];
state <= WRITE14;
end
WRITE14:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[2];
state <= WRITE15;
end
WRITE15:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[1];
state <= WRITE16;
end
WRITE16:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[0];
state <= PREIDLE;
mdio_done <= 1;
end
//
// Write 16bits of address for a Clause 45 Address transaction
//
C45_ADDR1:begin
mdio_tri <= 0;
mdio_out <= mdio_address[15];
state <= C45_ADDR2;
end
C45_ADDR2:begin
mdio_tri <= 0;
mdio_out <= mdio_address[14];
state <= C45_ADDR3;
end
C45_ADDR3:begin
mdio_tri <= 0;
mdio_out <= mdio_address[13];
state <= C45_ADDR4;
end
C45_ADDR4:begin
mdio_tri <= 0;
mdio_out <= mdio_address[12];
state <= C45_ADDR5;
end
C45_ADDR5:begin
mdio_tri <= 0;
mdio_out <= mdio_address[11];
state <= C45_ADDR6;
end
C45_ADDR6:begin
mdio_tri <= 0;
mdio_out <= mdio_address[10];
state <= C45_ADDR7;
end
C45_ADDR7:begin
mdio_tri <= 0;
mdio_out <= mdio_address[9];
state <= C45_ADDR8;
end
C45_ADDR8:begin
mdio_tri <= 0;
mdio_out <= mdio_address[8];
state <= C45_ADDR9;
end
C45_ADDR9:begin
mdio_tri <= 0;
mdio_out <= mdio_address[7];
state <= C45_ADDR10;
end
C45_ADDR10:begin
mdio_tri <= 0;
mdio_out <= mdio_address[6];
state <= C45_ADDR11;
end
C45_ADDR11:begin
mdio_tri <= 0;
mdio_out <= mdio_address[5];
state <= C45_ADDR12;
end
C45_ADDR12:begin
mdio_tri <= 0;
mdio_out <= mdio_address[4];
state <= C45_ADDR13;
end
C45_ADDR13:begin
mdio_tri <= 0;
mdio_out <= mdio_address[3];
state <= C45_ADDR14;
end
C45_ADDR14:begin
mdio_tri <= 0;
mdio_out <= mdio_address[2];
state <= C45_ADDR15;
end
C45_ADDR15:begin
mdio_tri <= 0;
mdio_out <= mdio_address[1];
state <= C45_ADDR16;
end
C45_ADDR16:begin
mdio_tri <= 0;
mdio_out <= mdio_address[0];
state <= PREIDLE;
mdio_done <= 1;
end
//
// PREIDLE allows the mdio_running bit to reset.
//
PREIDLE: begin
state <= IDLE;
end
endcase // case(state)
end // if (mdc_falling_edge)
endmodule
|