1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
//
// Copyright 2012 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// AXI stream to/from wishbone
// Input is an axi stream which wites into a BRAM.
// Output is an axi stream which reads from a BRAM.
// This RAM can also be accessed from a wishbone interface.
// From the wishbone interface we need to be able to:
// Ask the module if a completed packet is available.
// Read number of bytes/lines in the BRAM.
// Release the completed packet.
// Ask the module if an outgoing slot is available.
// Write number of bytes/lines in the BRAM.
// Release the completed packet.
module axi_stream_to_wb
#(
parameter AWIDTH = 13, //WB addr width and buffering size in bytes
parameter UWIDTH = 4, //stream user width
parameter CTRL_ADDR = 0 //ctrl/status register
)
(
//-- the wishbone interface
input clk_i, input rst_i,
input we_i, input stb_i, input cyc_i, output reg ack_o,
input [AWIDTH-1:0] adr_i, input [31:0] dat_i, output reg [31:0] dat_o,
//-- the axi stream interface input
input [63:0] rx_tdata,
input [3:0] rx_tuser,
input rx_tlast,
input rx_tvalid,
output rx_tready,
//-- the axi stream interface output
output [63:0] tx_tdata,
output [3:0] tx_tuser,
output tx_tlast,
output tx_tvalid,
input tx_tready,
output [31:0] debug_rx,
output [31:0] debug_tx
);
reg stb_i_del;
always @(posedge clk_i) begin
if (rst_i) stb_i_del <= 0;
else stb_i_del <= stb_i;
end
reg ack_o_del;
always @(posedge clk_i) begin
if (rst_i) ack_o_del <= 0;
else ack_o_del <= ack_o;
end
//drive the ack signal
always @(posedge clk_i) begin
if (rst_i) ack_o <= 0;
else if (we_i) ack_o <= stb_i & ~ack_o;
else ack_o <= stb_i & stb_i_del & ~ack_o & ~ack_o_del;
end
//control registers, status
reg [AWIDTH-1:0] tx_bytes, rx_bytes;
reg tx_error, rx_error;
wire rx_state_flag, tx_state_flag;
reg rx_proc_flag, tx_proc_flag;
//assign status
wire [31:0] status;
assign status[31] = rx_state_flag;
assign status[30] = tx_state_flag;
assign status[29] = rx_error;
assign status[AWIDTH-1:0] = rx_bytes;
// Create some piplining to break timing paths.
reg ctrl_addressed;
always @(posedge clk_i)
if (rst_i)
ctrl_addressed <= 1'b0;
else if(adr_i == CTRL_ADDR)
ctrl_addressed <= 1'b1;
else
ctrl_addressed <= 1'b0;
//assign control
always @(posedge clk_i) begin
if (rst_i) begin
rx_proc_flag <= 0;
tx_proc_flag <= 0;
tx_error <= 0;
tx_bytes <= 0;
end
else if (we_i && ack_o && ctrl_addressed) begin
rx_proc_flag <= dat_i[31];
tx_proc_flag <= dat_i[30];
tx_error <= dat_i[29];
tx_bytes <= dat_i[AWIDTH-1:0];
end
end
//------------------------------------------------------------------
//-- block ram interface between wb and input stream
//------------------------------------------------------------------
reg [AWIDTH-4:0] rx_counter;
wire [63:0] rx_bram_data64;
ram_2port #(.DWIDTH(64), .AWIDTH(AWIDTH-3)) input_stream_bram
(
.clka(clk_i), .ena(rx_tready), .wea(rx_tvalid),
.addra(rx_counter), .dia(rx_tdata), .doa(),
.clkb(clk_i), .enb(stb_i), .web(1'b0),
.addrb(adr_i[AWIDTH-1:3]), .dib({64{1'b1}}), .dob(rx_bram_data64)
);
//select the data source, status, or upper/lower 32 from bram
wire [31:0] dat_o_pipeline;
assign dat_o_pipeline = ctrl_addressed ? status : ((!adr_i[2])? rx_bram_data64[63:32]: rx_bram_data64[31:0]);
always @(posedge clk_i) begin
dat_o <= dat_o_pipeline;
end
//------------------------------------------------------------------
//-- block ram interface between wb and output stream
//------------------------------------------------------------------
reg [AWIDTH-4:0] tx_counter;
wire enb_out;
wire [63:0] tx_bram_data64;
ram_2port #(.DWIDTH(64), .AWIDTH(AWIDTH-3)) output_stream_bram
(
.clka(clk_i), .ena(enb_out), .wea(1'b0),
.addra(tx_counter), .dia({64{1'b1}}), .doa(tx_tdata),
.clkb(clk_i), .enb(stb_i), .web(we_i && adr_i[2]),
.addrb(adr_i[AWIDTH-1:3]), .dib(tx_bram_data64), .dob()
);
//write 64 bit chunks, so register the lower write
reg [31:0] dat_i_reg;
always @(posedge clk_i) begin
if (we_i && stb_i && !adr_i[2]) dat_i_reg <= dat_i;
end
assign tx_bram_data64 = {dat_i_reg, dat_i};
//------------------------------------------------------------------
//-- state machine to drive input stream
//------------------------------------------------------------------
localparam RX_STATE_READY = 0; //waits for proc flag 0
localparam RX_STATE_WRITE = 1; //writes stream to bram
localparam RX_STATE_RELEASE = 2; //waits for proc to flag 1
reg [1:0] rx_state;
always @(posedge clk_i) begin
if (rst_i) begin
rx_state <= RX_STATE_READY;
rx_counter <= 0;
rx_error <= 0;
rx_bytes <= 0;
end
else case (rx_state)
RX_STATE_READY: begin
if (!rx_proc_flag) rx_state <= RX_STATE_WRITE;
rx_counter <= 0;
end
RX_STATE_WRITE: begin
if (rx_tready && rx_tvalid) begin
rx_counter <= rx_counter + 1'b1;
if (rx_tlast) begin
rx_state <= RX_STATE_RELEASE;
rx_bytes <= {rx_counter + 1'b1, rx_tuser[2:0]};
rx_error <= rx_tuser[3];
end
end
end
RX_STATE_RELEASE: begin
if (rx_proc_flag) rx_state <= RX_STATE_READY;
rx_counter <= 0;
end
default: rx_state <= RX_STATE_READY;
endcase //rx_state
end
//flag tells the processor when it can grab some input buffer
assign rx_state_flag = (rx_state == RX_STATE_RELEASE);
//always ready to accept input data in the write state
assign rx_tready = (rx_state == RX_STATE_WRITE);
//------------------------------------------------------------------
//-- state machine to drive output stream
//------------------------------------------------------------------
localparam TX_STATE_READY = 0; //waits for proc flag 0
localparam TX_STATE_WRITE = 1; //writes bram to stream
localparam TX_STATE_RELEASE = 2; //waits for proc to flag 1
reg [1:0] tx_state;
always @(posedge clk_i) begin
if (rst_i) begin
tx_state <= TX_STATE_READY;
tx_counter <= 0;
end
else case (tx_state)
TX_STATE_READY: begin
if (tx_proc_flag) begin
tx_state <= TX_STATE_WRITE;
tx_counter <= 1;
end
else tx_counter <= 0;
end
TX_STATE_WRITE: begin
if (tx_tready && tx_tvalid) begin
tx_counter <= tx_counter + 1'b1;
if (tx_tlast) begin
tx_state <= TX_STATE_RELEASE;
end
end
end
TX_STATE_RELEASE: begin
if (!tx_proc_flag) tx_state <= TX_STATE_READY;
tx_counter <= 0;
end
default: tx_state <= TX_STATE_READY;
endcase //tx_state
end
//flag tells the processor when it can grab available out buffer
assign tx_state_flag = (tx_state == TX_STATE_READY);
//the output user bus assignment (non-zero only at end)
assign tx_tuser = (tx_tlast)? {tx_error, tx_bytes[2:0]} : 4'b0;
//end of frame signal
assign tx_tlast = (tx_counter == tx_bytes[AWIDTH-1:3]);
//output is always valid in state write
assign tx_tvalid = (tx_state == TX_STATE_WRITE);
//enable the read so we can pre-read due to read 1 cycle delay
assign enb_out = (tx_state == TX_STATE_WRITE)? (tx_tvalid && tx_tready) : 1'b1;
assign debug_rx = {
rx_state, rx_tlast, rx_tvalid, rx_tready, rx_tuser[2:0], //8
rx_proc_flag, rx_state_flag, rx_tdata[21:0] //24
};
assign debug_tx = {
tx_state, tx_tlast, tx_tvalid, tx_tready, tx_tuser[2:0], //8
tx_proc_flag, tx_state_flag, tx_tdata[21:0] //24
};
endmodule //axi_stream_to_wb
|