1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
-- Company: ZPU4 generic memory interface CPU
-- Engineer: yvind Harboe
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_arith.ALL;
library work;
use work.zpu_config.all;
use work.zpupkg.all;
entity zpu_core is
Port ( clk : in std_logic;
areset : in std_logic;
enable : in std_logic;
mem_req : out std_logic;
mem_we : out std_logic;
mem_ack : in std_logic;
mem_read : in std_logic_vector(wordSize-1 downto 0);
mem_write : out std_logic_vector(wordSize-1 downto 0);
out_mem_addr : out std_logic_vector(maxAddrBitIncIO downto 0);
mem_writeMask: out std_logic_vector(wordBytes-1 downto 0);
interrupt : in std_logic;
break : out std_logic;
zpu_status : out std_logic_vector(63 downto 0));
end zpu_core;
architecture behave of zpu_core is
type InsnType is
(
State_AddTop,
State_Dup,
State_DupStackB,
State_Pop,
State_Popdown,
State_Add,
State_Or,
State_And,
State_Store,
State_AddSP,
State_Shift,
State_Nop,
State_Im,
State_LoadSP,
State_StoreSP,
State_Emulate,
State_Load,
State_PushPC,
State_PushSP,
State_PopPC,
State_PopPCRel,
State_Not,
State_Flip,
State_PopSP,
State_Neqbranch,
State_Eq,
State_Loadb,
State_Mult,
State_Lessthan,
State_Lessthanorequal,
State_Ulessthanorequal,
State_Ulessthan,
State_Pushspadd,
State_Call,
State_Callpcrel,
State_Sub,
State_Break,
State_Storeb,
State_Interrupt,
State_InsnFetch
);
type StateType is
(
State_Idle, -- using first state first on the list out of paranoia
State_Load2,
State_Popped,
State_LoadSP2,
State_LoadSP3,
State_AddSP2,
State_Fetch,
State_Execute,
State_Decode,
State_Decode2,
State_Resync,
State_StoreSP2,
State_Resync2,
State_Resync3,
State_Loadb2,
State_Storeb2,
State_Mult2,
State_Mult3,
State_Mult5,
State_Mult6,
State_Mult4,
State_BinaryOpResult
);
signal pc : std_logic_vector(maxAddrBitIncIO downto 0);
signal sp : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
signal incSp : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
signal incIncSp : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
signal decSp : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
signal stackA : std_logic_vector(wordSize-1 downto 0);
signal binaryOpResult : std_logic_vector(wordSize-1 downto 0);
signal multResult2 : std_logic_vector(wordSize-1 downto 0);
signal multResult3 : std_logic_vector(wordSize-1 downto 0);
signal multResult : std_logic_vector(wordSize-1 downto 0);
signal multA : std_logic_vector(wordSize-1 downto 0);
signal multB : std_logic_vector(wordSize-1 downto 0);
signal stackB : std_logic_vector(wordSize-1 downto 0);
signal idim_flag : std_logic;
signal busy : std_logic;
signal mem_readEnable : std_logic;
signal mem_addr : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
signal mem_delayAddr : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
signal mem_delayReadEnable : std_logic;
signal mem_busy : std_logic;
signal decodeWord : std_logic_vector(wordSize-1 downto 0);
signal state : StateType;
signal insn : InsnType;
type InsnArray is array(0 to wordBytes-1) of InsnType;
signal decodedOpcode : InsnArray;
type OpcodeArray is array(0 to wordBytes-1) of std_logic_vector(7 downto 0);
signal opcode : OpcodeArray;
signal begin_inst : std_logic;
signal trace_opcode : std_logic_vector(7 downto 0);
signal trace_pc : std_logic_vector(maxAddrBitIncIO downto 0);
signal trace_sp : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
signal trace_topOfStack : std_logic_vector(wordSize-1 downto 0);
signal trace_topOfStackB : std_logic_vector(wordSize-1 downto 0);
signal out_mem_req : std_logic;
signal inInterrupt : std_logic;
-- state machine.
begin
mem_writeMask <= (others => '1');
zpu_status(maxAddrBitIncIO downto 0) <= trace_pc;
zpu_status(31) <= '1';
zpu_status(39 downto 32) <= trace_opcode;
zpu_status(40) <= '1' when (state = State_Idle) else '0';
zpu_status(62) <= '1';
traceFileGenerate:
if Generate_Trace generate
trace_file: trace port map (
clk => clk,
begin_inst => begin_inst,
pc => trace_pc,
opcode => trace_opcode,
sp => trace_sp,
memA => trace_topOfStack,
memB => trace_topOfStackB,
busy => busy,
intsp => (others => 'U')
);
end generate;
-- the memory subsystem will tell us one cycle later whether or
-- not it is busy
out_mem_addr(maxAddrBitIncIO downto minAddrBit) <= mem_addr;
out_mem_addr(minAddrBit-1 downto 0) <= (others => '0');
mem_req <= out_mem_req;
incSp <= sp + 1;
incIncSp <= sp + 2;
decSp <= sp - 1;
mem_busy <= out_mem_req and not mem_ack; -- '1' when the memory is busy
opcodeControl:
process(clk, areset)
variable tOpcode : std_logic_vector(OpCode_Size-1 downto 0);
variable spOffset : std_logic_vector(4 downto 0);
variable tSpOffset : std_logic_vector(4 downto 0);
variable nextPC : std_logic_vector(maxAddrBitIncIO downto 0);
variable tNextState : InsnType;
variable tDecodedOpcode : InsnArray;
variable tMultResult : std_logic_vector(wordSize*2-1 downto 0);
begin
if areset = '1' then
state <= State_Idle;
break <= '0';
sp <= spStart(maxAddrBitIncIO downto minAddrBit);
pc <= (others => '0');
idim_flag <= '0';
begin_inst <= '0';
mem_we <= '0';
multA <= (others => '0');
multB <= (others => '0');
out_mem_req <= '0';
mem_addr <= (others => DontCareValue);
mem_write <= (others => DontCareValue);
inInterrupt <= '0';
elsif (clk'event and clk = '1') then
-- we must multiply unconditionally to get pipelined multiplication
tMultResult := multA * multB;
multResult3 <= multResult2;
multResult2 <= multResult;
multResult <= tMultResult(wordSize-1 downto 0);
spOffset(4):=not opcode(conv_integer(pc(byteBits-1 downto 0)))(4);
spOffset(3 downto 0):=opcode(conv_integer(pc(byteBits-1 downto 0)))(3 downto 0);
nextPC := pc + 1;
-- prepare trace snapshot
trace_opcode <= opcode(conv_integer(pc(byteBits-1 downto 0)));
trace_pc <= pc;
trace_sp <= sp;
trace_topOfStack <= stackA;
trace_topOfStackB <= stackB;
begin_inst <= '0';
-- we terminate the requeset as soon as we get acknowledge
if mem_ack = '1' then
out_mem_req <= '0';
mem_we <= '0';
end if;
if interrupt='0' then
inInterrupt <= '0'; -- no longer in an interrupt
end if;
case state is
when State_Idle =>
if enable='1' then
state <= State_Resync;
end if;
-- Initial state of ZPU, fetch top of stack + first instruction
when State_Resync =>
if mem_busy='0' then
mem_addr <= sp;
out_mem_req <= '1';
state <= State_Resync2;
end if;
when State_Resync2 =>
if mem_busy='0' then
stackA <= mem_read;
mem_addr <= incSp;
out_mem_req <= '1';
state <= State_Resync3;
end if;
when State_Resync3 =>
if mem_busy='0' then
stackB <= mem_read;
mem_addr <= pc(maxAddrBitIncIO downto minAddrBit);
out_mem_req <= '1';
state <= State_Decode;
end if;
when State_Decode =>
if mem_busy='0' then
decodeWord <= mem_read;
state <= State_Decode2;
end if;
when State_Decode2 =>
-- decode 4 instructions in parallel
for i in 0 to wordBytes-1 loop
tOpcode := decodeWord((wordBytes-1-i+1)*8-1 downto (wordBytes-1-i)*8);
tSpOffset(4):=not tOpcode(4);
tSpOffset(3 downto 0):=tOpcode(3 downto 0);
opcode(i) <= tOpcode;
if (tOpcode(7 downto 7)=OpCode_Im) then
tNextState:=State_Im;
elsif (tOpcode(7 downto 5)=OpCode_StoreSP) then
if tSpOffset = 0 then
tNextState := State_Pop;
elsif tSpOffset=1 then
tNextState := State_PopDown;
else
tNextState :=State_StoreSP;
end if;
elsif (tOpcode(7 downto 5)=OpCode_LoadSP) then
if tSpOffset = 0 then
tNextState :=State_Dup;
elsif tSpOffset = 1 then
tNextState :=State_DupStackB;
else
tNextState :=State_LoadSP;
end if;
elsif (tOpcode(7 downto 5)=OpCode_Emulate) then
tNextState :=State_Emulate;
if tOpcode(5 downto 0)=OpCode_Neqbranch then
tNextState :=State_Neqbranch;
elsif tOpcode(5 downto 0)=OpCode_Eq then
tNextState :=State_Eq;
elsif tOpcode(5 downto 0)=OpCode_Lessthan then
tNextState :=State_Lessthan;
elsif tOpcode(5 downto 0)=OpCode_Lessthanorequal then
--tNextState :=State_Lessthanorequal;
elsif tOpcode(5 downto 0)=OpCode_Ulessthan then
tNextState :=State_Ulessthan;
elsif tOpcode(5 downto 0)=OpCode_Ulessthanorequal then
--tNextState :=State_Ulessthanorequal;
elsif tOpcode(5 downto 0)=OpCode_Loadb then
tNextState :=State_Loadb;
elsif tOpcode(5 downto 0)=OpCode_Mult then
tNextState :=State_Mult;
elsif tOpcode(5 downto 0)=OpCode_Storeb then
tNextState :=State_Storeb;
elsif tOpcode(5 downto 0)=OpCode_Pushspadd then
tNextState :=State_Pushspadd;
elsif tOpcode(5 downto 0)=OpCode_Callpcrel then
tNextState :=State_Callpcrel;
elsif tOpcode(5 downto 0)=OpCode_Call then
--tNextState :=State_Call;
elsif tOpcode(5 downto 0)=OpCode_Sub then
tNextState :=State_Sub;
elsif tOpcode(5 downto 0)=OpCode_PopPCRel then
--tNextState :=State_PopPCRel;
end if;
elsif (tOpcode(7 downto 4)=OpCode_AddSP) then
if tSpOffset = 0 then
tNextState := State_Shift;
elsif tSpOffset = 1 then
tNextState := State_AddTop;
else
tNextState :=State_AddSP;
end if;
else
case tOpcode(3 downto 0) is
when OpCode_Nop =>
tNextState :=State_Nop;
when OpCode_PushSP =>
tNextState :=State_PushSP;
when OpCode_PopPC =>
tNextState :=State_PopPC;
when OpCode_Add =>
tNextState :=State_Add;
when OpCode_Or =>
tNextState :=State_Or;
when OpCode_And =>
tNextState :=State_And;
when OpCode_Load =>
tNextState :=State_Load;
when OpCode_Not =>
tNextState :=State_Not;
when OpCode_Flip =>
tNextState :=State_Flip;
when OpCode_Store =>
tNextState :=State_Store;
when OpCode_PopSP =>
tNextState :=State_PopSP;
when others =>
tNextState := State_Break;
end case;
end if;
tDecodedOpcode(i) := tNextState;
end loop;
insn <= tDecodedOpcode(conv_integer(pc(byteBits-1 downto 0)));
-- once we wrap, we need to fetch
tDecodedOpcode(0) := State_InsnFetch;
decodedOpcode <= tDecodedOpcode;
state <= State_Execute;
-- Each instruction must:
--
-- 1. set idim_flag
-- 2. increase pc if applicable
-- 3. set next state if appliable
-- 4. do it's operation
when State_Execute =>
insn <= decodedOpcode(conv_integer(nextPC(byteBits-1 downto 0)));
case insn is
when State_InsnFetch =>
state <= State_Fetch;
when State_Im =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '1';
pc <= pc + 1;
if idim_flag='1' then
stackA(wordSize-1 downto 7) <= stackA(wordSize-8 downto 0);
stackA(6 downto 0) <= opcode(conv_integer(pc(byteBits-1 downto 0)))(6 downto 0);
else
out_mem_req <= '1';
mem_we <= '1';
mem_addr <= incSp;
mem_write <= stackB;
stackB <= stackA;
sp <= decSp;
for i in wordSize-1 downto 7 loop
stackA(i) <= opcode(conv_integer(pc(byteBits-1 downto 0)))(6);
end loop;
stackA(6 downto 0) <= opcode(conv_integer(pc(byteBits-1 downto 0)))(6 downto 0);
end if;
else
insn <= insn;
end if;
when State_StoreSP =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
state <= State_StoreSP2;
out_mem_req <= '1';
mem_we <= '1';
mem_addr <= sp+spOffset;
mem_write <= stackA;
stackA <= stackB;
sp <= incSp;
else
insn <= insn;
end if;
when State_LoadSP =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
state <= State_LoadSP2;
sp <= decSp;
out_mem_req <= '1';
mem_we <= '1';
mem_addr <= incSp;
mem_write <= stackB;
else
insn <= insn;
end if;
when State_Emulate =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
sp <= decSp;
out_mem_req <= '1';
mem_we <= '1';
mem_addr <= incSp;
mem_write <= stackB;
stackA <= (others => DontCareValue);
stackA(maxAddrBitIncIO downto 0) <= pc + 1;
stackB <= stackA;
-- The emulate address is:
-- 98 7654 3210
-- 0000 00aa aaa0 0000
pc <= (others => '0');
pc(9 downto 5) <= opcode(conv_integer(pc(byteBits-1 downto 0)))(4 downto 0);
state <= State_Fetch;
else
insn <= insn;
end if;
when State_Callpcrel =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
stackA <= (others => DontCareValue);
stackA(maxAddrBitIncIO downto 0) <= pc + 1;
pc <= pc + stackA(maxAddrBitIncIO downto 0);
state <= State_Fetch;
else
insn <= insn;
end if;
when State_Call =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
stackA <= (others => DontCareValue);
stackA(maxAddrBitIncIO downto 0) <= pc + 1;
pc <= stackA(maxAddrBitIncIO downto 0);
state <= State_Fetch;
else
insn <= insn;
end if;
when State_AddSP =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
state <= State_AddSP2;
out_mem_req <= '1';
mem_addr <= sp+spOffset;
else
insn <= insn;
end if;
when State_PushSP =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
sp <= decSp;
stackA <= (others => '0');
stackA(maxAddrBitIncIO downto minAddrBit) <= sp;
stackB <= stackA;
out_mem_req <= '1';
mem_we <= '1';
mem_addr <= incSp;
mem_write <= stackB;
else
insn <= insn;
end if;
when State_PopPC =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
pc <= stackA(maxAddrBitIncIO downto 0);
sp <= incSp;
out_mem_req <= '1';
mem_we <= '1';
mem_addr <= incSp;
mem_write <= stackB;
state <= State_Resync;
else
insn <= insn;
end if;
when State_PopPCRel =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
pc <= stackA(maxAddrBitIncIO downto 0) + pc;
sp <= incSp;
out_mem_req <= '1';
mem_we <= '1';
mem_addr <= incSp;
mem_write <= stackB;
state <= State_Resync;
else
insn <= insn;
end if;
when State_Add =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
stackA <= stackA + stackB;
out_mem_req <= '1';
mem_addr <= incIncSp;
sp <= incSp;
state <= State_Popped;
else
insn <= insn;
end if;
when State_Sub =>
begin_inst <= '1';
idim_flag <= '0';
binaryOpResult <= stackB - stackA;
state <= State_BinaryOpResult;
when State_Pop =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
mem_addr <= incIncSp;
out_mem_req <= '1';
sp <= incSp;
stackA <= stackB;
state <= State_Popped;
else
insn <= insn;
end if;
when State_PopDown =>
if mem_busy='0' then
-- PopDown leaves top of stack unchanged
begin_inst <= '1';
idim_flag <= '0';
mem_addr <= incIncSp;
out_mem_req <= '1';
sp <= incSp;
state <= State_Popped;
else
insn <= insn;
end if;
when State_Or =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
stackA <= stackA or stackB;
out_mem_req <= '1';
mem_addr <= incIncSp;
sp <= incSp;
state <= State_Popped;
else
insn <= insn;
end if;
when State_And =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
stackA <= stackA and stackB;
out_mem_req <= '1';
mem_addr <= incIncSp;
sp <= incSp;
state <= State_Popped;
else
insn <= insn;
end if;
when State_Eq =>
begin_inst <= '1';
idim_flag <= '0';
binaryOpResult <= (others => '0');
if (stackA=stackB) then
binaryOpResult(0) <= '1';
end if;
state <= State_BinaryOpResult;
when State_Ulessthan =>
begin_inst <= '1';
idim_flag <= '0';
binaryOpResult <= (others => '0');
if (stackA<stackB) then
binaryOpResult(0) <= '1';
end if;
state <= State_BinaryOpResult;
when State_Ulessthanorequal =>
begin_inst <= '1';
idim_flag <= '0';
binaryOpResult <= (others => '0');
if (stackA<=stackB) then
binaryOpResult(0) <= '1';
end if;
state <= State_BinaryOpResult;
when State_Lessthan =>
begin_inst <= '1';
idim_flag <= '0';
binaryOpResult <= (others => '0');
if (signed(stackA)<signed(stackB)) then
binaryOpResult(0) <= '1';
end if;
state <= State_BinaryOpResult;
when State_Lessthanorequal =>
begin_inst <= '1';
idim_flag <= '0';
binaryOpResult <= (others => '0');
if (signed(stackA)<=signed(stackB)) then
binaryOpResult(0) <= '1';
end if;
state <= State_BinaryOpResult;
when State_Load =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
state <= State_Load2;
mem_addr <= stackA(maxAddrBitIncIO downto minAddrBit);
out_mem_req <= '1';
else
insn <= insn;
end if;
when State_Dup =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
sp <= decSp;
stackB <= stackA;
mem_write <= stackB;
mem_addr <= incSp;
out_mem_req <= '1';
mem_we <= '1';
else
insn <= insn;
end if;
when State_DupStackB =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
sp <= decSp;
stackA <= stackB;
stackB <= stackA;
mem_write <= stackB;
mem_addr <= incSp;
out_mem_req <= '1';
mem_we <= '1';
else
insn <= insn;
end if;
when State_Store =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
mem_addr <= stackA(maxAddrBitIncIO downto minAddrBit);
mem_write <= stackB;
out_mem_req <= '1';
mem_we <= '1';
sp <= incIncSp;
state <= State_Resync;
else
insn <= insn;
end if;
when State_PopSP =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
mem_write <= stackB;
mem_addr <= incSp;
out_mem_req <= '1';
mem_we <= '1';
sp <= stackA(maxAddrBitIncIO downto minAddrBit);
state <= State_Resync;
else
insn <= insn;
end if;
when State_Nop =>
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
when State_Not =>
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
stackA <= not stackA;
when State_Flip =>
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
for i in 0 to wordSize-1 loop
stackA(i) <= stackA(wordSize-1-i);
end loop;
when State_AddTop =>
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
stackA <= stackA + stackB;
when State_Shift =>
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
stackA(wordSize-1 downto 1) <= stackA(wordSize-2 downto 0);
stackA(0) <= '0';
when State_Pushspadd =>
begin_inst <= '1';
idim_flag <= '0';
pc <= pc + 1;
stackA <= (others => '0');
stackA(maxAddrBitIncIO downto minAddrBit) <= stackA(maxAddrBitIncIO-minAddrBit downto 0)+sp;
when State_Neqbranch =>
-- branches are almost always taken as they form loops
begin_inst <= '1';
idim_flag <= '0';
sp <= incIncSp;
if (stackB/=0) then
pc <= stackA(maxAddrBitIncIO downto 0) + pc;
else
pc <= pc + 1;
end if;
-- need to fetch stack again.
state <= State_Resync;
when State_Mult =>
begin_inst <= '1';
idim_flag <= '0';
multA <= stackA;
multB <= stackB;
state <= State_Mult2;
when State_Break =>
report "Break instruction encountered" severity failure;
break <= '1';
when State_Loadb =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
state <= State_Loadb2;
mem_addr <= stackA(maxAddrBitIncIO downto minAddrBit);
out_mem_req <= '1';
else
insn <= insn;
end if;
when State_Storeb =>
if mem_busy='0' then
begin_inst <= '1';
idim_flag <= '0';
state <= State_Storeb2;
mem_addr <= stackA(maxAddrBitIncIO downto minAddrBit);
out_mem_req <= '1';
else
insn <= insn;
end if;
when others =>
-- sp <= (others => DontCareValue);
report "Illegal instruction" severity failure;
break <= '1';
end case;
when State_StoreSP2 =>
if mem_busy='0' then
mem_addr <= incSp;
out_mem_req <= '1';
state <= State_Popped;
end if;
when State_LoadSP2 =>
if mem_busy='0' then
state <= State_LoadSP3;
out_mem_req <= '1';
mem_addr <= sp+spOffset+1;
end if;
when State_LoadSP3 =>
if mem_busy='0' then
pc <= pc + 1;
state <= State_Execute;
stackB <= stackA;
stackA <= mem_read;
end if;
when State_AddSP2 =>
if mem_busy='0' then
pc <= pc + 1;
state <= State_Execute;
stackA <= stackA + mem_read;
end if;
when State_Load2 =>
if mem_busy='0' then
stackA <= mem_read;
pc <= pc + 1;
state <= State_Execute;
end if;
when State_Loadb2 =>
if mem_busy='0' then
stackA <= (others => '0');
stackA(7 downto 0) <= mem_read(((wordBytes-1-conv_integer(stackA(byteBits-1 downto 0)))*8+7) downto (wordBytes-1-conv_integer(stackA(byteBits-1 downto 0)))*8);
pc <= pc + 1;
state <= State_Execute;
end if;
when State_Storeb2 =>
if mem_busy='0' then
mem_addr <= stackA(maxAddrBitIncIO downto minAddrBit);
mem_write <= mem_read;
mem_write(((wordBytes-1-conv_integer(stackA(byteBits-1 downto 0)))*8+7) downto (wordBytes-1-conv_integer(stackA(byteBits-1 downto 0)))*8) <= stackB(7 downto 0) ;
out_mem_req <= '1';
mem_we <= '1';
pc <= pc + 1;
sp <= incIncSp;
state <= State_Resync;
end if;
when State_Fetch =>
if mem_busy='0' then
if interrupt='1' and inInterrupt='0' and idim_flag='0' then
-- We got an interrupt
inInterrupt <= '1';
sp <= decSp;
out_mem_req <= '1';
mem_we <= '1';
mem_addr <= incSp;
mem_write <= stackB;
stackA <= (others => DontCareValue);
stackA(maxAddrBitIncIO downto 0) <= pc;
stackB <= stackA;
pc <= conv_std_logic_vector(32, maxAddrBitIncIo+1); -- interrupt address
report "ZPU jumped to interrupt!" severity note;
else
mem_addr <= pc(maxAddrBitIncIO downto minAddrBit);
out_mem_req <= '1';
state <= State_Decode;
end if;
end if;
when State_Mult2 =>
state <= State_Mult3;
when State_Mult3 =>
state <= State_Mult4;
when State_Mult4 =>
state <= State_Mult5;
when State_Mult5 =>
stackA <= multResult3;
state <= State_Mult6;
when State_Mult6 =>
if mem_busy='0' then
out_mem_req <= '1';
mem_addr <= incIncSp;
sp <= incSp;
state <= State_Popped;
end if;
when State_BinaryOpResult =>
if mem_busy='0' then
-- NB!!!! we know that the memory isn't busy at this point!!!!
out_mem_req <= '1';
mem_addr <= incIncSp;
sp <= incSp;
stackA <= binaryOpResult;
state <= State_Popped;
end if;
when State_Popped =>
if mem_busy='0' then
pc <= pc + 1;
stackB <= mem_read;
state <= State_Execute;
end if;
when others =>
-- sp <= (others => DontCareValue);
report "Illegal state" severity failure;
break <= '1';
end case;
end if;
end process;
end behave;
|