1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
//
// Copyright 2015 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
module b205_ref_pll(
input reset,
input clk, // 200 MHz sample clock
input refclk, // 40 MHz reference clock
input ref, // PPS or 10 MHz external reference
output reg locked,
// SPI lines to AD5662
output sclk,
output mosi,
output sync_n
);
// Base parameters
localparam SAMPLE_CLOCK_FREQ=200_000_000;
localparam REF_FREQ_PPS=1;
localparam REF_FREQ_10MHZ=10_000_000;
localparam REF_CLK_FREQ=40_000_000;
localparam PFD_FREQ_PPS=1;
localparam PFD_FREQ_10MHZ=10;
// Lock detection parameters
localparam LOCK_TOLERANCE_PPM=1;
localparam LOCK_MARGIN_PPS=(SAMPLE_CLOCK_FREQ/PFD_FREQ_PPS)*LOCK_TOLERANCE_PPM/1_000_000;
localparam LOCK_MARGIN_10MHZ=(SAMPLE_CLOCK_FREQ/PFD_FREQ_10MHZ)*LOCK_TOLERANCE_PPM/1_000_000;
// Reference frequency detection parameters
// References are only valid if they are +/-5ppm because that is the range of the VCTXCO
localparam REF_PERIOD_PPS=SAMPLE_CLOCK_FREQ/REF_FREQ_PPS;
localparam REF_PERIOD_10MHZ=SAMPLE_CLOCK_FREQ/REF_FREQ_10MHZ;
localparam REF_PERIOD_PPS_MIN=REF_PERIOD_PPS-(REF_PERIOD_PPS*5/1_000_000)-1;
localparam REF_PERIOD_PPS_MAX=REF_PERIOD_PPS+(REF_PERIOD_PPS*5/1_000_000)+1;
localparam REF_PERIOD_10MHZ_MIN=REF_PERIOD_10MHZ-(REF_PERIOD_10MHZ*5/1_000_000)-1;
localparam REF_PERIOD_10MHZ_MAX=REF_PERIOD_10MHZ+(REF_PERIOD_10MHZ*5/1_000_000)+1;
// R divider parameters
localparam RDIV_PPS=REF_FREQ_PPS/PFD_FREQ_PPS;
localparam RDIV_10MHZ=REF_FREQ_10MHZ/PFD_FREQ_10MHZ;
// N divider parameters (refclk is divided by 2)
localparam NDIV_PPS=REF_CLK_FREQ/2/PFD_FREQ_PPS;
localparam NDIV_10MHZ=REF_CLK_FREQ/2/PFD_FREQ_10MHZ;
// PFD parameters
localparam PFD_PERIOD_PPS=SAMPLE_CLOCK_FREQ/PFD_FREQ_PPS;
localparam PFD_PERIOD_10MHZ=SAMPLE_CLOCK_FREQ/PFD_FREQ_10MHZ;
// Initial divide by 2 for 40 MHz clock
// (since refclk cannot be sampled directly)
reg refclk_div;
always @(posedge refclk) begin
refclk_div <= ~refclk_div;
end
// flop signals into sample clock domain together
reg [3:0] refsmp;
reg [3:0] refclksmp;
always @(posedge clk) begin
refsmp <= {refsmp[2:0],ref};
refclksmp <= {refclksmp[2:0],refclk_div};
end
// rising edge detection
wire ref_rising = (refsmp[3:2] == 2'b01);
wire refclk_rising = (refclksmp[3:2] == 2'b01);
// reference frequency detection
reg [27:0] refcnt;
reg ref_detected;
reg ref_is_10M;
reg ref_is_pps;
wire valid_ref = ref_is_10M | ref_is_pps;
always @(posedge clk) begin
if (reset) begin
refcnt <= 28'd0;
ref_detected <= 1'b0;
ref_is_10M <= 1'b0;
ref_is_pps <= 1'b0;
end
else if (ref_rising) begin
refcnt <= 28'd1;
ref_detected <= 1'b1;
ref_is_10M <= ((refcnt >= REF_PERIOD_10MHZ_MIN) && (refcnt <= REF_PERIOD_10MHZ_MAX));
ref_is_pps <= ((refcnt >= REF_PERIOD_PPS_MIN) && (refcnt <= REF_PERIOD_PPS_MAX));
end
else if ((ref_is_10M && (refcnt > REF_PERIOD_10MHZ_MAX)) || (refcnt > REF_PERIOD_PPS_MAX)) begin
// consider the reference lost
refcnt <= 28'd0;
ref_detected <= 1'b0;
ref_is_10M <= 1'b0;
ref_is_pps <= 1'b0;
end
else if (ref_detected)
refcnt <= refcnt + 28'd1;
end
// R divider
wire [23:0] rdiv = ref_is_10M ? RDIV_10MHZ : RDIV_PPS;
reg [23:0] rcnt;
wire [23:0] next_rcnt = ~valid_ref ? 24'd0 : (rcnt == rdiv) ? 24'd1 : rcnt + 1'b1;
reg r_rising;
always @(posedge clk) begin
if (ref_rising)
rcnt <= next_rcnt;
r_rising <= (ref_rising && ((ref_is_10M && (rcnt == rdiv)) || ref_is_pps));
end
// N divider
// Enable on rising edge of R after valid_ref
// is asserted so R and N signals start aligned.
// Disable if reference lost.
wire [25:0] ndiv = ref_is_10M ? NDIV_10MHZ : NDIV_PPS;
reg [25:0] ncnt;
wire [25:0] next_ncnt = ~valid_ref ? 26'd0 : ncnt == ndiv ? 26'd1 : ncnt + 1'b1;
reg n_rising;
always @(posedge clk) begin
if (refclk_rising)
ncnt <= next_ncnt;
n_rising <= (refclk_rising && (ncnt == ndiv));
end
// Frequency Counter
wire signed [28:0] period = ref_is_10M ? PFD_PERIOD_10MHZ : PFD_PERIOD_PPS;
reg signed [28:0] r_period_cnt;
reg signed [28:0] freq_err;
always @(posedge clk) begin
if (reset | ~valid_ref) begin
r_period_cnt <= 28'd0;
freq_err <= 29'sd0;
end
else if (r_rising) begin
r_period_cnt <= 28'd1;
freq_err <= period - r_period_cnt;
end
else
r_period_cnt <= r_period_cnt + 28'd1;
end
// Phase Counter
reg signed [28:0] lead_cnt;
reg lead_cnt_ena;
reg signed [28:0] lead;
always @(posedge clk) begin
// Count how much N leads R
// The count is negative because it measures
// how much the VCTCXO must be slowed down.
if (~valid_ref | n_rising) begin
lead_cnt <= 29'sd0;
lead_cnt_ena <= 1'b1;
if (r_rising)
lead <= 29'sd0;
end
else if (r_rising) begin
if (lead_cnt_ena)
lead <= lead_cnt - 29'sd1;
else begin
// R rising with no preceding N rising.
// N has changed from leading to lagging R,
// but we don't yet know by how much so
// assume 1.
lead <= 29'sd1;
end
lead_cnt_ena <= 1'b0;
end
else if (lead_cnt_ena)
lead_cnt <= lead_cnt - 29'sd1;
end
// PFD State Machine
localparam MEASURE=4'd0;
localparam CAPTURE=4'd1;
localparam CAPTURE_LAG=4'd2;
localparam CAPTURE_LEAD=4'd3;
localparam CALCULATE_ERROR=4'd4;
localparam CALCULATE_10M_GAIN=4'd5;
localparam CALCULATE_ADJUSTMENT=4'd6;
localparam CALCULATE_OUTPUT_VALUE=4'd7;
localparam APPLY_OUTPUT_VALUE=4'd8;
reg [3:0] state;
reg [15:0] daco = 16'd32767;
wire signed [28:0] lock_margin = ref_is_10M ? LOCK_MARGIN_10MHZ : LOCK_MARGIN_PPS;
wire signed [28:0] lag = lead + period;
reg signed [28:0] phase_err;
reg signed [28:0] err;
reg signed [28:0] shift;
reg signed [28:0] adj;
wire signed [28:0] dacv = {13'd0, daco};
reg signed [28:0] sum;
reg [2:0] ld;
always @(posedge clk) begin
if (reset || ~valid_ref) begin
state <= MEASURE;
daco <= 16'd32767;
err <= 29'sd0;
shift <= 29'sd0;
adj <= 29'sd0;
ld <= 3'd0;
end
else begin
case(state)
MEASURE: begin
if (r_rising)
state <= CAPTURE;
end
CAPTURE: begin
if (lag < -lead)
state <= CAPTURE_LAG;
else
state <= CAPTURE_LEAD;
end
CAPTURE_LAG: begin
phase_err <= lag;
ld <= {ld[1:0], (lag <= lock_margin)};
state <= CALCULATE_ERROR;
end
CAPTURE_LEAD: begin
phase_err <= lead;
ld <= {ld[1:0], (-lead <= lock_margin)};
state <= CALCULATE_ERROR;
end
CALCULATE_ERROR: begin
err <= phase_err + freq_err;
state <= ref_is_10M ? CALCULATE_10M_GAIN : CALCULATE_ADJUSTMENT;
end
CALCULATE_10M_GAIN: begin
shift <= (err < -7 || err > 7) ? 7 : (err < 0 ? -err : err);
state <= CALCULATE_ADJUSTMENT;
end
CALCULATE_ADJUSTMENT: begin
// The VCTCXO is +/-5 ppm from 0.3V to 1.5V and the DAC is 16 bits,
// which works out to 0.000228885 ppm per DAC unit.
// The 200 MHz sampling clock means each unit of error is 0.005 ppm,
// which works out to 21.845 DAC units to correct each unit of error.
// Theory is nice, but the proportional and integral gains used here
// were determined through manual tuning.
if (ref_is_10M)
adj <= (err <<< shift);
else
adj <= (err <<< 4) - err;
state <= CALCULATE_OUTPUT_VALUE;
end
CALCULATE_OUTPUT_VALUE: begin
sum <= dacv + adj;
state <= APPLY_OUTPUT_VALUE;
end
APPLY_OUTPUT_VALUE: begin
// Clip and apply
if (sum < 29'sd0)
daco <= 16'd0;
else if (sum > 29'sd65535)
daco <= 16'd65535;
else
daco <= sum[15:0];
state <= MEASURE;
end
endcase
end
end
always @(posedge clk)
locked <= (ld == 3'b111);
ad5662_auto_spi dac
(
.clk(clk),
.dat(daco),
.sclk(sclk),
.mosi(mosi),
.sync_n(sync_n)
);
endmodule
|