1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
/////////////////////////////////////////////////////////////////////
//
// Copyright 2018 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0
//
// Module: e31x_core
// Description:
// - Motherboard Registers
// - Crossbar
// - Noc Block Radio
// - Noc Block Dram Fifo
// - Radio Front End control
//
/////////////////////////////////////////////////////////////////////
module e31x_core #(
parameter REG_DWIDTH = 32, // Width of the AXI4-Lite data bus (must be 32 or 64)
parameter REG_AWIDTH = 32, // Width of the address bus
parameter BUS_CLK_RATE = 200000000, // bus_clk rate
parameter NUM_SFP_PORTS = 0, // Number of SFP Ports
parameter NUM_RADIO_CORES = 1,
parameter NUM_CHANNELS_PER_RADIO = 2,
parameter NUM_CHANNELS = 2,
parameter NUM_DBOARDS = 1,
parameter FP_GPIO_WIDTH = 8, // Front panel GPIO width
parameter DB_GPIO_WIDTH = 16 // Daughterboard GPIO width
)(
// Clocks and resets
input radio_clk,
input radio_rst,
input bus_clk,
input bus_rst,
// Motherboard Registers: AXI lite interface
input s_axi_aclk,
input s_axi_aresetn,
input [REG_AWIDTH-1:0] s_axi_awaddr,
input s_axi_awvalid,
output s_axi_awready,
input [REG_DWIDTH-1:0] s_axi_wdata,
input [REG_DWIDTH/8-1:0] s_axi_wstrb,
input s_axi_wvalid,
output s_axi_wready,
output [1:0] s_axi_bresp,
output s_axi_bvalid,
input s_axi_bready,
input [REG_AWIDTH-1:0] s_axi_araddr,
input s_axi_arvalid,
output s_axi_arready,
output [REG_DWIDTH-1:0] s_axi_rdata,
output [1:0] s_axi_rresp,
output s_axi_rvalid,
input s_axi_rready,
// PPS and Clock Control
input pps_refclk,
input refclk_locked,
output reg [1:0] pps_select,
// PS GPIO source
input [FP_GPIO_WIDTH-1:0] ps_gpio_out,
input [FP_GPIO_WIDTH-1:0] ps_gpio_tri,
output [FP_GPIO_WIDTH-1:0] ps_gpio_in,
// Front Panel GPIO
input [FP_GPIO_WIDTH-1:0] fp_gpio_in,
output [FP_GPIO_WIDTH-1:0] fp_gpio_tri,
output [FP_GPIO_WIDTH-1:0] fp_gpio_out,
// Radio GPIO control
output [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_out_flat,
output [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_ddr_flat,
input [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_in_flat,
input [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_fab_flat,
// TX/RX LEDs
output [32*NUM_CHANNELS-1:0] leds_flat,
// Radio ATR
output [NUM_CHANNELS-1:0] rx_atr,
output [NUM_CHANNELS-1:0] tx_atr,
// Radio Data
input [NUM_CHANNELS-1:0] rx_stb,
input [NUM_CHANNELS-1:0] tx_stb,
input [32*NUM_CHANNELS-1:0] rx,
output [32*NUM_CHANNELS-1:0] tx,
// DMA
output [63:0] dmao_tdata,
output dmao_tlast,
output dmao_tvalid,
input dmao_tready,
input [63:0] dmai_tdata,
input dmai_tlast,
input dmai_tvalid,
output dmai_tready,
// Misc
input [31:0] build_datestamp,
input [31:0] sfp_ports_info,
input [31:0] gps_status,
output reg [31:0] gps_ctrl,
input [31:0] dboard_status,
input [31:0] xadc_readback,
output reg [31:0] fp_gpio_ctrl,
output reg [31:0] dboard_ctrl
);
/////////////////////////////////////////////////////////////////////////////////
//
// FPGA Compatibility Number
// Rules for modifying compat number:
// - Major is updated when the FPGA is changed and requires a software
// change as a result.
// - Minor is updated when a new feature is added to the FPGA that does not
// break software compatibility.
//
/////////////////////////////////////////////////////////////////////////////////
localparam [15:0] COMPAT_MAJOR = 16'd1;
localparam [15:0] COMPAT_MINOR = 16'd0;
/////////////////////////////////////////////////////////////////////////////////
// Computation engines that need access to IO
localparam NUM_IO_CE = NUM_RADIO_CORES; //NUM_RADIO_CORES
// Radio NOC ID
localparam NOC_ID_RADIO = 64'h12AD_1000_0000_3310;
// Base width of crossbar based on fixed components (ethernet, DMA)
localparam XBAR_FIXED_PORTS = 1 + NUM_SFP_PORTS;
/////////////////////////////////////////////////////////////////////////////////
//
// Motherboard Registers
//
/////////////////////////////////////////////////////////////////////////////////
// Register base
localparam REG_BASE_MISC = 14'h0;
localparam REG_BASE_XBAR = 14'h1000;
localparam NUM_CORE_REGPORT_SLAVES = 2; // Global registers + Crossbar
// Misc Registers
localparam REG_COMPAT_NUM = REG_BASE_MISC + 14'h00;
localparam REG_DATESTAMP = REG_BASE_MISC + 14'h04;
localparam REG_GIT_HASH = REG_BASE_MISC + 14'h08;
localparam REG_SCRATCH = REG_BASE_MISC + 14'h0C;
localparam REG_NUM_CE = REG_BASE_MISC + 14'h10;
localparam REG_NUM_IO_CE = REG_BASE_MISC + 14'h14;
localparam REG_CLOCK_CTRL = REG_BASE_MISC + 14'h18;
localparam REG_XADC_READBACK = REG_BASE_MISC + 14'h1C;
localparam REG_BUS_CLK_RATE = REG_BASE_MISC + 14'h20;
localparam REG_BUS_CLK_COUNT = REG_BASE_MISC + 14'h24;
localparam REG_FP_GPIO_MASTER = REG_BASE_MISC + 14'h30;
localparam REG_FP_GPIO_RADIO_SRC = REG_BASE_MISC + 14'h34;
localparam REG_GPS_CTRL = REG_BASE_MISC + 14'h38;
localparam REG_GPS_STATUS = REG_BASE_MISC + 14'h3C;
localparam REG_DBOARD_CTRL = REG_BASE_MISC + 14'h40;
localparam REG_DBOARD_STATUS = REG_BASE_MISC + 14'h44;
localparam REG_XBAR_BASEPORT = REG_BASE_MISC + 14'h48;
reg [31:0] fp_gpio_master_reg = 32'h0;
reg [31:0] fp_gpio_src_reg = 32'h0;
wire reg_wr_req;
wire [REG_AWIDTH-1:0] reg_wr_addr;
wire [REG_DWIDTH-1:0] reg_wr_data;
wire reg_rd_req;
wire [REG_AWIDTH-1:0] reg_rd_addr;
wire reg_rd_resp;
wire [REG_DWIDTH-1:0] reg_rd_data;
reg reg_rd_resp_glob;
reg [REG_DWIDTH-1:0] reg_rd_data_glob;
wire [REG_DWIDTH-1:0] reg_rd_data_xbar;
wire reg_rd_resp_xbar;
reg [31:0] scratch_reg = 32'h0;
reg [31:0] bus_counter = 32'h0;
always @(posedge bus_clk) begin
if (bus_rst)
bus_counter <= 32'd0;
else
bus_counter <= bus_counter + 32'd1;
end
// Regport Master to convert AXI4-Lite to regport
axil_regport_master #(
.DWIDTH (REG_DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
.AWIDTH (REG_AWIDTH), // Width of the address bus
.WRBASE (0), // Write address base
.RDBASE (0), // Read address base
.TIMEOUT (10) // log2(timeout). Read will timeout after (2^TIMEOUT - 1) cycles
) core_regport_master_i (
// Clock and reset
.s_axi_aclk (s_axi_aclk),
.s_axi_aresetn (s_axi_aresetn),
// AXI4-Lite: Write address port (domain: s_axi_aclk)
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awvalid (s_axi_awvalid),
.s_axi_awready (s_axi_awready),
// AXI4-Lite: Write data port (domain: s_axi_aclk)
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wvalid (s_axi_wvalid),
.s_axi_wready (s_axi_wready),
// AXI4-Lite: Write response port (domain: s_axi_aclk)
.s_axi_bresp (s_axi_bresp),
.s_axi_bvalid (s_axi_bvalid),
.s_axi_bready (s_axi_bready),
// AXI4-Lite: Read address port (domain: s_axi_aclk)
.s_axi_araddr (s_axi_araddr),
.s_axi_arvalid (s_axi_arvalid),
.s_axi_arready (s_axi_arready),
// AXI4-Lite: Read data port (domain: s_axi_aclk)
.s_axi_rdata (s_axi_rdata),
.s_axi_rresp (s_axi_rresp),
.s_axi_rvalid (s_axi_rvalid),
.s_axi_rready (s_axi_rready),
// Register port: Write port (domain: reg_clk)
.reg_clk (bus_clk),
.reg_wr_req (reg_wr_req),
.reg_wr_addr (reg_wr_addr),
.reg_wr_data (reg_wr_data),
.reg_wr_keep (/*unused*/),
// Register port: Read port (domain: reg_clk)
.reg_rd_req (reg_rd_req),
.reg_rd_addr (reg_rd_addr),
.reg_rd_resp (reg_rd_resp),
.reg_rd_data (reg_rd_data)
);
// Muxed Read Response on the regport
// - Crossbar registers
// - Global registers
regport_resp_mux #(
.WIDTH(REG_DWIDTH),
.NUM_SLAVES(NUM_CORE_REGPORT_SLAVES)
) core_regport_resp_mux_i (
.clk(bus_clk),
.reset(bus_rst),
.sla_rd_resp({reg_rd_resp_glob, reg_rd_resp_xbar}),
.sla_rd_data({reg_rd_data_glob, reg_rd_data_xbar}),
.mst_rd_resp(reg_rd_resp),
.mst_rd_data(reg_rd_data)
);
//--------------------------------------------------------------------
// Global Registers
// -------------------------------------------------------------------
// Write Registers
always @ (posedge bus_clk) begin
if (bus_rst) begin
scratch_reg <= 32'h0;
pps_select <= 2'b00; // Default to internal
fp_gpio_ctrl <= 32'h9; // Default to OFF - 4'b1001
gps_ctrl <= 32'h3; // Default to gps_en, out of reset
dboard_ctrl <= 32'h3; // Default to mimo, in reset
end else if (reg_wr_req) begin
case (reg_wr_addr)
REG_FP_GPIO_MASTER: begin
fp_gpio_master_reg <= reg_wr_data;
end
REG_FP_GPIO_RADIO_SRC: begin
fp_gpio_src_reg <= reg_wr_data;
end
REG_SCRATCH: begin
scratch_reg <= reg_wr_data;
end
REG_CLOCK_CTRL: begin
pps_select <= reg_wr_data[1:0];
end
REG_GPS_CTRL: begin
gps_ctrl <= reg_wr_data;
end
REG_DBOARD_CTRL: begin
dboard_ctrl <= reg_wr_data;
end
endcase
end
end
// Read Registers
always @ (posedge bus_clk) begin
if (bus_rst) begin
reg_rd_resp_glob <= 1'b0;
end
else begin
if (reg_rd_req) begin
reg_rd_resp_glob <= 1'b1;
case (reg_rd_addr)
REG_COMPAT_NUM:
reg_rd_data_glob <= {COMPAT_MAJOR, COMPAT_MINOR};
REG_FP_GPIO_MASTER:
reg_rd_data_glob <= fp_gpio_master_reg;
REG_FP_GPIO_RADIO_SRC:
reg_rd_data_glob <= fp_gpio_src_reg;
REG_DATESTAMP:
reg_rd_data_glob <= build_datestamp;
REG_GIT_HASH:
reg_rd_data_glob <= `GIT_HASH;
REG_SCRATCH:
reg_rd_data_glob <= scratch_reg;
REG_NUM_CE:
reg_rd_data_glob <= NUM_CE;
REG_NUM_IO_CE:
reg_rd_data_glob <= NUM_IO_CE;
REG_CLOCK_CTRL: begin
reg_rd_data_glob <= 32'b0;
reg_rd_data_glob[1:0] <= pps_select;
reg_rd_data_glob[2] <= refclk_locked;
end
REG_XADC_READBACK:
reg_rd_data_glob <= xadc_readback;
REG_BUS_CLK_RATE:
reg_rd_data_glob <= BUS_CLK_RATE;
REG_BUS_CLK_COUNT:
reg_rd_data_glob <= bus_counter;
REG_GPS_CTRL:
reg_rd_data_glob <= gps_ctrl;
REG_GPS_STATUS:
reg_rd_data_glob <= gps_status;
REG_DBOARD_CTRL:
reg_rd_data_glob <= dboard_ctrl;
REG_DBOARD_STATUS:
reg_rd_data_glob <= dboard_status;
REG_XBAR_BASEPORT:
reg_rd_data_glob <= XBAR_FIXED_PORTS;
default:
reg_rd_resp_glob <= 1'b0;
endcase
end
else if (reg_rd_resp_glob) begin
reg_rd_resp_glob <= 1'b0;
end
end
end
/////////////////////////////////////////////////////////////////////////////////////////////
//
// IOCE: CEs that need access to IO
// - Radio 0
//
/////////////////////////////////////////////////////////////////////////////////////////////
wire [NUM_IO_CE*64-1:0] ioce_flat_o_tdata;
wire [NUM_IO_CE*64-1:0] ioce_flat_i_tdata;
wire [63:0] ioce_o_tdata[0:NUM_IO_CE-1];
wire [63:0] ioce_i_tdata[0:NUM_IO_CE-1];
wire [NUM_IO_CE-1:0] ioce_o_tlast;
wire [NUM_IO_CE-1:0] ioce_o_tvalid;
wire [NUM_IO_CE-1:0] ioce_o_tready;
wire [NUM_IO_CE-1:0] ioce_i_tlast;
wire [NUM_IO_CE-1:0] ioce_i_tvalid;
wire [NUM_IO_CE-1:0] ioce_i_tready;
genvar ioce_i;
generate for (ioce_i = 0; ioce_i < NUM_IO_CE; ioce_i = ioce_i + 1) begin
assign ioce_o_tdata[ioce_i] = ioce_flat_o_tdata[ioce_i*64 + 63 : ioce_i*64];
assign ioce_flat_i_tdata[ioce_i*64+63:ioce_i*64] = ioce_i_tdata[ioce_i];
end endgenerate
/////////////////////////////////////////////////////////////////////////////
//
// Radio
//
/////////////////////////////////////////////////////////////////////////////
wire pps_radioclk;
// Synchronize the PPS signal to the radio clock domain
synchronizer pps_radio_sync (
.clk(radio_clk), .rst(1'b0), .in(pps_refclk), .out(pps_radioclk)
);
localparam RADIO_INPUT_BUFF_SIZE = 8'd11;
// The radio needs a larger output buffer compared to other blocks because it is a finite
// rate producer i.e. the input is not backpressured.
// Here, we allocate enough room from 2 MTU sized packets. This buffer serves as a
// packet gate so we need room for an additional packet if the first one is held due to
// contention on the crossbar. Any additional buffering will be largely a waste.
localparam RADIO_OUTPUT_BUFF_SIZE = 8'd10;
wire [31:0] rx_int[0:NUM_CHANNELS-1], rx_data[0:NUM_CHANNELS-1], tx_int[0:NUM_CHANNELS-1], tx_data[0:NUM_CHANNELS-1];
wire db_fe_set_stb[0:1];
wire [7:0] db_fe_set_addr[0:1];
wire [31:0] db_fe_set_data[0:1];
wire db_fe_rb_stb[0:1];
wire [7:0] db_fe_rb_addr[0:1];
wire [63:0] db_fe_rb_data[0:1];
wire rx_running[0:1], tx_running[0:1];
wire [NUM_RADIO_CORES-1:0] sync_out;
genvar i;
generate
for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
assign rx_atr[i] = rx_running[i];
assign tx_atr[i] = tx_running[i];
end
endgenerate
noc_block_radio_core #(
.NOC_ID(NOC_ID_RADIO),
.NUM_CHANNELS(NUM_CHANNELS_PER_RADIO),
.STR_SINK_FIFOSIZE({NUM_CHANNELS_PER_RADIO{RADIO_INPUT_BUFF_SIZE}}),
.MTU(RADIO_OUTPUT_BUFF_SIZE)
) noc_block_radio_core_i (
// Clocks and reset
.bus_clk(bus_clk),
.bus_rst(bus_rst),
.ce_clk(radio_clk),
.ce_rst(radio_rst),
//AXIS data to/from crossbar
.i_tdata(ioce_o_tdata[0]),
.i_tlast(ioce_o_tlast[0]),
.i_tvalid(ioce_o_tvalid[0]),
.i_tready(ioce_o_tready[0]),
.o_tdata(ioce_i_tdata[0]),
.o_tlast(ioce_i_tlast[0]),
.o_tvalid(ioce_i_tvalid[0]),
.o_tready(ioce_i_tready[0]),
// Radio front-end
.rx({rx_data[1],rx_data[0]}),
.rx_stb({rx_stb[1], rx_stb[0]}),
.tx({tx_data[1], tx_data[0]}),
.tx_stb({tx_stb[1], tx_stb[0]}),
// Timing and sync
.pps(pps_radioclk),
.sync_in(1'b0),
.sync_out(sync_out),
.rx_running({rx_running[1], rx_running[0]}),
.tx_running({tx_running[1], tx_running[0]}),
// Ctrl ports connected to radio dboard and front end core
.db_fe_set_stb ({db_fe_set_stb [1], db_fe_set_stb [0]}),
.db_fe_set_addr({db_fe_set_addr[1], db_fe_set_addr[0]}),
.db_fe_set_data({db_fe_set_data[1], db_fe_set_data[0]}),
.db_fe_rb_stb ({db_fe_rb_stb [1], db_fe_rb_stb [0]}),
.db_fe_rb_addr ({db_fe_rb_addr [1], db_fe_rb_addr [0]}),
.db_fe_rb_data ({db_fe_rb_data [1], db_fe_rb_data [0]}),
//Debug
.debug()
);
/////////////////////////////////////////////////////////////////////////////
//
// Radio Front End Control
//
/////////////////////////////////////////////////////////////////////////////
// Radio Daughter board GPIO
wire [DB_GPIO_WIDTH-1:0] db_gpio_in[0:NUM_CHANNELS-1];
wire [DB_GPIO_WIDTH-1:0] db_gpio_out[0:NUM_CHANNELS-1];
wire [DB_GPIO_WIDTH-1:0] db_gpio_ddr[0:NUM_CHANNELS-1];
wire [DB_GPIO_WIDTH-1:0] db_gpio_fab[0:NUM_CHANNELS-1];
wire [31:0] radio_gpio_out[0:NUM_CHANNELS-1];
wire [31:0] radio_gpio_ddr[0:NUM_CHANNELS-1];
wire [31:0] radio_gpio_in[0:NUM_CHANNELS-1];
wire [31:0] leds[0:NUM_CHANNELS-1];
generate
for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
// Radio Data
assign rx_int[i] = rx[32*i+31:32*i];
assign tx[32*i+31:32*i] = tx_int[i];
// GPIO
assign db_gpio_out_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH] = db_gpio_out[i];
assign db_gpio_ddr_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH] = db_gpio_ddr[i];
assign db_gpio_in[i] = db_gpio_in_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH];
assign db_gpio_fab[i] = db_gpio_fab_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH];
// LEDs
assign leds_flat[32*i+31:32*i] = leds[i];
end
endgenerate
generate
for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
n3xx_db_fe_core db_fe_core_i (
.clk(radio_clk),
.reset(radio_rst),
.set_stb(db_fe_set_stb[i]),
.set_addr(db_fe_set_addr[i]),
.set_data(db_fe_set_data[i]),
.rb_stb(db_fe_rb_stb[i]),
.rb_addr(db_fe_rb_addr[i]),
.rb_data(db_fe_rb_data[i]),
.time_sync(sync_out[i < 2 ? 0 : 1]),
.tx_stb(tx_stb[i]),
.tx_data_in(tx_data[i]),
.tx_data_out(tx_int[i]),
.tx_running(tx_running[i]),
.rx_stb(rx_stb[i]),
.rx_data_in(rx_int[i]),
.rx_data_out(rx_data[i]),
.rx_running(rx_running[i]),
.misc_ins(32'h0),
.misc_outs(),
.fp_gpio_in(radio_gpio_in[i]),
.fp_gpio_out(radio_gpio_out[i]),
.fp_gpio_ddr(radio_gpio_ddr[i]),
.fp_gpio_fab(32'h0),
.db_gpio_in(db_gpio_in[i]),
.db_gpio_out(db_gpio_out[i]),
.db_gpio_ddr(db_gpio_ddr[i]),
.db_gpio_fab(db_gpio_fab[i]),
.leds(leds[i]),
.spi_clk(1'b0),
.spi_rst(1'b0),
.sen(),
.sclk(),
.mosi(),
.miso(1'b0)
);
end
endgenerate
////////////////////////////////////////////////////////////////////////
//
// axi_crossbar ports:
// The crossbar has 16 ports out of which Port 4 to Port 15 can be used
// for RFNOC blocks. Note that Radio and DRAM are always included by default
// but DDC/DUC and other blocks are not and need to be included via
// rfnoc_ce_default_inst_e31x.v which can be edited manually or
// automatically generated by rfnoc mod tool.
//
// 0 - DMA to PS
// 1 - Radio
// 2 - CE0
// ...
// ...
// 15 - CE13
//
////////////////////////////////////////////////////////////////////////
// Included automatically instantiated CEs sources file created by RFNoC mod tool
`ifdef RFNOC
`include "rfnoc_ce_auto_inst_e31x.v"
`else
`include "rfnoc_ce_default_inst_e31x.v"
`endif
localparam XBAR_NUM_PORTS = XBAR_FIXED_PORTS + NUM_CE + NUM_IO_CE;
wire [(NUM_CE + NUM_IO_CE)*64-1:0] xbar_ce_o_tdata;
wire [(NUM_CE + NUM_IO_CE)-1:0] xbar_ce_o_tlast;
wire [(NUM_CE + NUM_IO_CE)-1:0] xbar_ce_o_tvalid;
wire [(NUM_CE + NUM_IO_CE)-1:0] xbar_ce_o_tready;
wire [(NUM_CE + NUM_IO_CE)*64-1:0] xbar_ce_i_tdata;
wire [(NUM_CE + NUM_IO_CE)-1:0] xbar_ce_i_tlast;
wire [(NUM_CE + NUM_IO_CE)-1:0] xbar_ce_i_tvalid;
wire [(NUM_CE + NUM_IO_CE)-1:0] xbar_ce_i_tready;
assign xbar_ce_i_tdata = {ce_flat_i_tdata, ioce_flat_i_tdata};
assign xbar_ce_i_tvalid = {ce_i_tvalid, ioce_i_tvalid};
assign {ce_i_tready, ioce_i_tready} = xbar_ce_i_tready;
assign xbar_ce_i_tlast = {ce_i_tlast, ioce_i_tlast};
assign {ce_flat_o_tdata, ioce_flat_o_tdata} = xbar_ce_o_tdata;
assign {ce_o_tvalid, ioce_o_tvalid} = xbar_ce_o_tvalid;
assign xbar_ce_o_tready = {ce_o_tready, ioce_o_tready};
assign {ce_o_tlast, ioce_o_tlast} = xbar_ce_o_tlast;
// Note: The custom accelerator inputs / outputs bitwidth grow based on NUM_CE
axi_crossbar_regport #(
.REG_BASE(REG_BASE_XBAR),
.REG_DWIDTH(REG_DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
.REG_AWIDTH(REG_AWIDTH), // Width of the address bus
.FIFO_WIDTH(64),
.DST_WIDTH(16),
.NUM_INPUTS(XBAR_NUM_PORTS),
.NUM_OUTPUTS(XBAR_NUM_PORTS)
) axi_crossbar_regport_i (
.clk(bus_clk), .reset(bus_rst), .clear(1'b0),
.i_tdata({xbar_ce_i_tdata,dmai_tdata}),
.i_tlast({xbar_ce_i_tlast,dmai_tlast}),
.i_tvalid({xbar_ce_i_tvalid,dmai_tvalid}),
.i_tready({xbar_ce_i_tready,dmai_tready}),
.o_tdata({xbar_ce_o_tdata,dmao_tdata}),
.o_tlast({xbar_ce_o_tlast,dmao_tlast}),
.o_tvalid({xbar_ce_o_tvalid,dmao_tvalid}),
.o_tready({xbar_ce_o_tready,dmao_tready}),
.pkt_present({xbar_ce_i_tvalid,dmai_tvalid}),
.reg_wr_req(reg_wr_req),
.reg_wr_addr(reg_wr_addr),
.reg_wr_data(reg_wr_data),
.reg_rd_req(reg_rd_req),
.reg_rd_addr(reg_rd_addr),
.reg_rd_data(reg_rd_data_xbar),
.reg_rd_resp(reg_rd_resp_xbar)
);
/////////////////////////////////////////////////////////////////////////////
//
// Front-panel GPIO
//
/////////////////////////////////////////////////////////////////////////////
wire [FP_GPIO_WIDTH-1:0] radio_gpio_in_sync;
wire [FP_GPIO_WIDTH-1:0] radio_gpio_src_out;
reg [FP_GPIO_WIDTH-1:0] radio_gpio_src_out_reg;
wire [FP_GPIO_WIDTH-1:0] radio_gpio_src_ddr;
reg [FP_GPIO_WIDTH-1:0] radio_gpio_src_ddr_reg = ~0;
// Double-synchronize the inputs to the PS
synchronizer #(
.INITIAL_VAL(1'b0), .WIDTH(FP_GPIO_WIDTH)
) ps_gpio_in_sync_i (
.clk(bus_clk), .rst(1'b0), .in(fp_gpio_in), .out(ps_gpio_in)
);
// Double-synchronize the inputs to the radio
synchronizer #(
.INITIAL_VAL(1'b0), .WIDTH(FP_GPIO_WIDTH)
) radio_gpio_in_sync_i (
.clk(radio_clk), .rst(1'b0), .in(fp_gpio_in), .out(radio_gpio_in_sync)
);
// Map the double-synchronized inputs to all radio channels
generate
for (i=0; i<NUM_CHANNELS; i=i+1) begin: gen_fp_gpio_in_sync
assign radio_gpio_in[i][FP_GPIO_WIDTH-1:0] = radio_gpio_in_sync;
end
endgenerate
// For each of the FP GPIO bits, implement four control muxes
generate
for (i=0; i<FP_GPIO_WIDTH; i=i+1) begin: gpio_muxing_gen
// 1) Select which radio drives the output
assign radio_gpio_src_out[i] = radio_gpio_out[fp_gpio_src_reg[2*i+1:2*i]][i];
always @ (posedge radio_clk) begin
if (radio_rst) begin
radio_gpio_src_out_reg <= 0;
end else begin
radio_gpio_src_out_reg <= radio_gpio_src_out;
end
end
// 2) Select which radio drives the direction
assign radio_gpio_src_ddr[i] = radio_gpio_ddr[fp_gpio_src_reg[2*i+1:2*i]][i];
always @ (posedge radio_clk) begin
if (radio_rst) begin
radio_gpio_src_ddr_reg <= ~0;
end else begin
radio_gpio_src_ddr_reg <= radio_gpio_src_ddr;
end
end
// 3) Select if the radio or the ps drives the output
//
// The following implements a 2:1 mux in a LUT explicitly to avoid
// glitches that can be introduced by unexpected Vivado synthesis.
//
(* dont_touch = "TRUE" *) LUT3 #(
.INIT(8'hCA) // Specify LUT Contents. O = ~I2&I0 | I2&I1
) mux_out_i (
.O(fp_gpio_out[i]), // LUT general output. Mux output
.I0(radio_gpio_src_out_reg[i]), // LUT input. Input 1
.I1(ps_gpio_out[i]), // LUT input. Input 2
.I2(fp_gpio_master_reg[i]) // LUT input. Select bit
);
// 4) Select if the radio or the PS drives the direction
//
(* dont_touch = "TRUE" *) LUT3 #(
.INIT(8'hC5) // Specify LUT Contents. O = ~I2&I0 | I2&~I1
) mux_ddr_i (
.O(fp_gpio_tri[i]), // LUT general output. Mux output
.I0(radio_gpio_src_ddr_reg[i]), // LUT input. Input 1
.I1(ps_gpio_tri[i]), // LUT input. Input 2
.I2(fp_gpio_master_reg[i]) // LUT input. Select bit
);
end
endgenerate
endmodule //e31x_core
|