File: e31x_core.v

package info (click to toggle)
uhd 3.15.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 202,252 kB
  • sloc: cpp: 182,756; ansic: 94,109; vhdl: 53,420; python: 45,849; xml: 12,956; tcl: 7,046; makefile: 2,248; sh: 1,741; pascal: 230; javascript: 120; csh: 94; asm: 20; perl: 11
file content (709 lines) | stat: -rwxr-xr-x 24,111 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/////////////////////////////////////////////////////////////////////
//
// Copyright 2018 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0
//
// Module: e31x_core
// Description:
//  - Motherboard Registers
//  - Crossbar
//  - Noc Block Radio
//  - Noc Block Dram Fifo
//  - Radio Front End control
//
/////////////////////////////////////////////////////////////////////

module e31x_core #(
  parameter REG_DWIDTH   = 32,        // Width of the AXI4-Lite data bus (must be 32 or 64)
  parameter REG_AWIDTH   = 32,        // Width of the address bus
  parameter BUS_CLK_RATE = 200000000, // bus_clk rate
  parameter NUM_SFP_PORTS = 0,        // Number of SFP Ports
  parameter NUM_RADIO_CORES = 1,
  parameter NUM_CHANNELS_PER_RADIO = 2,
  parameter NUM_CHANNELS = 2,
  parameter NUM_DBOARDS = 1,
  parameter FP_GPIO_WIDTH = 8,  // Front panel GPIO width
  parameter DB_GPIO_WIDTH = 16  // Daughterboard GPIO width
)(
  // Clocks and resets
  input radio_clk,
  input radio_rst,
  input bus_clk,
  input bus_rst,

  // Motherboard Registers: AXI lite interface
  input                    s_axi_aclk,
  input                    s_axi_aresetn,
  input [REG_AWIDTH-1:0]   s_axi_awaddr,
  input                    s_axi_awvalid,
  output                   s_axi_awready,

  input [REG_DWIDTH-1:0]   s_axi_wdata,
  input [REG_DWIDTH/8-1:0] s_axi_wstrb,
  input                    s_axi_wvalid,
  output                   s_axi_wready,

  output [1:0]             s_axi_bresp,
  output                   s_axi_bvalid,
  input                    s_axi_bready,

  input [REG_AWIDTH-1:0]   s_axi_araddr,
  input                    s_axi_arvalid,
  output                   s_axi_arready,

  output [REG_DWIDTH-1:0]  s_axi_rdata,
  output [1:0]             s_axi_rresp,
  output                   s_axi_rvalid,
  input                    s_axi_rready,

  // PPS and Clock Control
  input            pps_refclk,
  input            refclk_locked,
  output reg [1:0] pps_select,

  // PS GPIO source
  input  [FP_GPIO_WIDTH-1:0]  ps_gpio_out,
  input  [FP_GPIO_WIDTH-1:0]  ps_gpio_tri,
  output [FP_GPIO_WIDTH-1:0]  ps_gpio_in,

  // Front Panel GPIO
  input  [FP_GPIO_WIDTH-1:0] fp_gpio_in,
  output [FP_GPIO_WIDTH-1:0] fp_gpio_tri,
  output [FP_GPIO_WIDTH-1:0] fp_gpio_out,

  // Radio GPIO control
  output [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_out_flat,
  output [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_ddr_flat,
  input  [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_in_flat,
  input  [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_fab_flat,

  // TX/RX LEDs
  output [32*NUM_CHANNELS-1:0] leds_flat,

  // Radio ATR
  output [NUM_CHANNELS-1:0] rx_atr,
  output [NUM_CHANNELS-1:0] tx_atr,

  // Radio Data
  input  [NUM_CHANNELS-1:0]    rx_stb,
  input  [NUM_CHANNELS-1:0]    tx_stb,
  input  [32*NUM_CHANNELS-1:0] rx,
  output [32*NUM_CHANNELS-1:0] tx,

  // DMA
  output [63:0] dmao_tdata,
  output        dmao_tlast,
  output        dmao_tvalid,
  input         dmao_tready,

  input [63:0]  dmai_tdata,
  input         dmai_tlast,
  input         dmai_tvalid,
  output        dmai_tready,

  // Misc
  input      [31:0] build_datestamp,
  input      [31:0] sfp_ports_info,
  input      [31:0] gps_status,
  output reg [31:0] gps_ctrl,
  input      [31:0] dboard_status,
  input      [31:0] xadc_readback,
  output reg [31:0] fp_gpio_ctrl,
  output reg [31:0] dboard_ctrl
);

  /////////////////////////////////////////////////////////////////////////////////
  //
  // FPGA Compatibility Number
  //   Rules for modifying compat number:
  //   - Major is updated when the FPGA is changed and requires a software
  //     change as a result.
  //   - Minor is updated when a new feature is added to the FPGA that does not
  //     break software compatibility.
  //
  /////////////////////////////////////////////////////////////////////////////////

  localparam [15:0] COMPAT_MAJOR = 16'd1;
  localparam [15:0] COMPAT_MINOR = 16'd0;

  /////////////////////////////////////////////////////////////////////////////////

  // Computation engines that need access to IO
  localparam NUM_IO_CE = NUM_RADIO_CORES; //NUM_RADIO_CORES
  // Radio NOC ID
  localparam NOC_ID_RADIO = 64'h12AD_1000_0000_3310;

  // Base width of crossbar based on fixed components (ethernet, DMA)
  localparam XBAR_FIXED_PORTS = 1 + NUM_SFP_PORTS;

  /////////////////////////////////////////////////////////////////////////////////
  //
  // Motherboard Registers
  //
  /////////////////////////////////////////////////////////////////////////////////

  // Register base
  localparam REG_BASE_MISC           = 14'h0;
  localparam REG_BASE_XBAR           = 14'h1000;
  localparam NUM_CORE_REGPORT_SLAVES = 2; // Global registers + Crossbar

  // Misc Registers
  localparam REG_COMPAT_NUM        = REG_BASE_MISC + 14'h00;
  localparam REG_DATESTAMP         = REG_BASE_MISC + 14'h04;
  localparam REG_GIT_HASH          = REG_BASE_MISC + 14'h08;
  localparam REG_SCRATCH           = REG_BASE_MISC + 14'h0C;
  localparam REG_NUM_CE            = REG_BASE_MISC + 14'h10;
  localparam REG_NUM_IO_CE         = REG_BASE_MISC + 14'h14;
  localparam REG_CLOCK_CTRL        = REG_BASE_MISC + 14'h18;
  localparam REG_XADC_READBACK     = REG_BASE_MISC + 14'h1C;
  localparam REG_BUS_CLK_RATE      = REG_BASE_MISC + 14'h20;
  localparam REG_BUS_CLK_COUNT     = REG_BASE_MISC + 14'h24;
  localparam REG_FP_GPIO_MASTER    = REG_BASE_MISC + 14'h30;
  localparam REG_FP_GPIO_RADIO_SRC = REG_BASE_MISC + 14'h34;
  localparam REG_GPS_CTRL          = REG_BASE_MISC + 14'h38;
  localparam REG_GPS_STATUS        = REG_BASE_MISC + 14'h3C;
  localparam REG_DBOARD_CTRL       = REG_BASE_MISC + 14'h40;
  localparam REG_DBOARD_STATUS     = REG_BASE_MISC + 14'h44;
  localparam REG_XBAR_BASEPORT     = REG_BASE_MISC + 14'h48;

  reg  [31:0]              fp_gpio_master_reg = 32'h0;
  reg  [31:0]              fp_gpio_src_reg    = 32'h0;

  wire                     reg_wr_req;
  wire [REG_AWIDTH-1:0]    reg_wr_addr;
  wire [REG_DWIDTH-1:0]    reg_wr_data;
  wire                     reg_rd_req;
  wire [REG_AWIDTH-1:0]    reg_rd_addr;
  wire                     reg_rd_resp;
  wire [REG_DWIDTH-1:0]    reg_rd_data;

  reg                      reg_rd_resp_glob;
  reg  [REG_DWIDTH-1:0]    reg_rd_data_glob;

  wire [REG_DWIDTH-1:0]    reg_rd_data_xbar;
  wire                     reg_rd_resp_xbar;

  reg [31:0] scratch_reg = 32'h0;
  reg [31:0] bus_counter = 32'h0;

  always @(posedge bus_clk) begin
     if (bus_rst)
        bus_counter <= 32'd0;
     else
        bus_counter <= bus_counter + 32'd1;
  end

  // Regport Master to convert AXI4-Lite to regport
  axil_regport_master #(
    .DWIDTH   (REG_DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
    .AWIDTH   (REG_AWIDTH), // Width of the address bus
    .WRBASE   (0),          // Write address base
    .RDBASE   (0),          // Read address base
    .TIMEOUT  (10)          // log2(timeout). Read will timeout after (2^TIMEOUT - 1) cycles
  ) core_regport_master_i (
    // Clock and reset
    .s_axi_aclk    (s_axi_aclk),
    .s_axi_aresetn (s_axi_aresetn),
    // AXI4-Lite: Write address port (domain: s_axi_aclk)
    .s_axi_awaddr  (s_axi_awaddr),
    .s_axi_awvalid (s_axi_awvalid),
    .s_axi_awready (s_axi_awready),
    // AXI4-Lite: Write data port (domain: s_axi_aclk)
    .s_axi_wdata   (s_axi_wdata),
    .s_axi_wstrb   (s_axi_wstrb),
    .s_axi_wvalid  (s_axi_wvalid),
    .s_axi_wready  (s_axi_wready),
    // AXI4-Lite: Write response port (domain: s_axi_aclk)
    .s_axi_bresp   (s_axi_bresp),
    .s_axi_bvalid  (s_axi_bvalid),
    .s_axi_bready  (s_axi_bready),
    // AXI4-Lite: Read address port (domain: s_axi_aclk)
    .s_axi_araddr  (s_axi_araddr),
    .s_axi_arvalid (s_axi_arvalid),
    .s_axi_arready (s_axi_arready),
    // AXI4-Lite: Read data port (domain: s_axi_aclk)
    .s_axi_rdata   (s_axi_rdata),
    .s_axi_rresp   (s_axi_rresp),
    .s_axi_rvalid  (s_axi_rvalid),
    .s_axi_rready  (s_axi_rready),
    // Register port: Write port (domain: reg_clk)
    .reg_clk       (bus_clk),
    .reg_wr_req    (reg_wr_req),
    .reg_wr_addr   (reg_wr_addr),
    .reg_wr_data   (reg_wr_data),
    .reg_wr_keep   (/*unused*/),
    // Register port: Read port (domain: reg_clk)
    .reg_rd_req    (reg_rd_req),
    .reg_rd_addr   (reg_rd_addr),
    .reg_rd_resp   (reg_rd_resp),
    .reg_rd_data   (reg_rd_data)
  );

  // Muxed Read Response on the regport
  //    - Crossbar registers
  //    - Global registers
  regport_resp_mux #(
    .WIDTH(REG_DWIDTH),
    .NUM_SLAVES(NUM_CORE_REGPORT_SLAVES)
  ) core_regport_resp_mux_i (
    .clk(bus_clk),
    .reset(bus_rst),
    .sla_rd_resp({reg_rd_resp_glob, reg_rd_resp_xbar}),
    .sla_rd_data({reg_rd_data_glob, reg_rd_data_xbar}),
    .mst_rd_resp(reg_rd_resp),
    .mst_rd_data(reg_rd_data)
  );

  //--------------------------------------------------------------------
  // Global Registers
  // -------------------------------------------------------------------

  // Write Registers
  always @ (posedge bus_clk) begin
    if (bus_rst) begin
      scratch_reg    <= 32'h0;
      pps_select     <= 2'b00; // Default to internal
      fp_gpio_ctrl   <= 32'h9; // Default to OFF - 4'b1001
      gps_ctrl       <= 32'h3; // Default to gps_en, out of reset
      dboard_ctrl    <= 32'h3; // Default to mimo, in reset
    end else if (reg_wr_req) begin
      case (reg_wr_addr)
        REG_FP_GPIO_MASTER: begin
          fp_gpio_master_reg <= reg_wr_data;
        end
        REG_FP_GPIO_RADIO_SRC: begin
          fp_gpio_src_reg <= reg_wr_data;
        end
        REG_SCRATCH: begin
          scratch_reg <= reg_wr_data;
        end
        REG_CLOCK_CTRL: begin
          pps_select  <= reg_wr_data[1:0];
        end
        REG_GPS_CTRL: begin
          gps_ctrl    <= reg_wr_data;
        end
        REG_DBOARD_CTRL: begin
          dboard_ctrl <= reg_wr_data;
        end
      endcase
    end
  end

  // Read Registers
  always @ (posedge bus_clk) begin
    if (bus_rst) begin
      reg_rd_resp_glob <= 1'b0;
    end
    else begin

      if (reg_rd_req) begin
        reg_rd_resp_glob <= 1'b1;

        case (reg_rd_addr)
        REG_COMPAT_NUM:
          reg_rd_data_glob <= {COMPAT_MAJOR, COMPAT_MINOR};

        REG_FP_GPIO_MASTER:
          reg_rd_data_glob <= fp_gpio_master_reg;

        REG_FP_GPIO_RADIO_SRC:
          reg_rd_data_glob <= fp_gpio_src_reg;

        REG_DATESTAMP:
          reg_rd_data_glob <= build_datestamp;

        REG_GIT_HASH:
          reg_rd_data_glob <= `GIT_HASH;

        REG_SCRATCH:
          reg_rd_data_glob <= scratch_reg;

        REG_NUM_CE:
          reg_rd_data_glob <= NUM_CE;

        REG_NUM_IO_CE:
          reg_rd_data_glob <= NUM_IO_CE;

        REG_CLOCK_CTRL: begin
          reg_rd_data_glob      <= 32'b0;
          reg_rd_data_glob[1:0] <= pps_select;
          reg_rd_data_glob[2]   <= refclk_locked;
        end

        REG_XADC_READBACK:
          reg_rd_data_glob <= xadc_readback;

        REG_BUS_CLK_RATE:
          reg_rd_data_glob <= BUS_CLK_RATE;

        REG_BUS_CLK_COUNT:
          reg_rd_data_glob <= bus_counter;

        REG_GPS_CTRL:
          reg_rd_data_glob <= gps_ctrl;

        REG_GPS_STATUS:
          reg_rd_data_glob <= gps_status;

        REG_DBOARD_CTRL:
          reg_rd_data_glob <= dboard_ctrl;

        REG_DBOARD_STATUS:
          reg_rd_data_glob <= dboard_status;

        REG_XBAR_BASEPORT:
          reg_rd_data_glob <= XBAR_FIXED_PORTS;

        default:
          reg_rd_resp_glob <= 1'b0;
        endcase
      end
      else if (reg_rd_resp_glob) begin
          reg_rd_resp_glob <= 1'b0;
      end
    end
  end

  /////////////////////////////////////////////////////////////////////////////////////////////
  //
  // IOCE: CEs that need access to IO
  //   - Radio 0
  //
  /////////////////////////////////////////////////////////////////////////////////////////////

  wire     [NUM_IO_CE*64-1:0]  ioce_flat_o_tdata;
  wire     [NUM_IO_CE*64-1:0]  ioce_flat_i_tdata;
  wire     [63:0]              ioce_o_tdata[0:NUM_IO_CE-1];
  wire     [63:0]              ioce_i_tdata[0:NUM_IO_CE-1];
  wire     [NUM_IO_CE-1:0]     ioce_o_tlast;
  wire     [NUM_IO_CE-1:0]     ioce_o_tvalid;
  wire     [NUM_IO_CE-1:0]     ioce_o_tready;
  wire     [NUM_IO_CE-1:0]     ioce_i_tlast;
  wire     [NUM_IO_CE-1:0]     ioce_i_tvalid;
  wire     [NUM_IO_CE-1:0]     ioce_i_tready;

  genvar ioce_i;
  generate for (ioce_i = 0; ioce_i < NUM_IO_CE; ioce_i = ioce_i + 1) begin
     assign ioce_o_tdata[ioce_i] = ioce_flat_o_tdata[ioce_i*64 + 63 : ioce_i*64];
     assign ioce_flat_i_tdata[ioce_i*64+63:ioce_i*64] = ioce_i_tdata[ioce_i];
  end endgenerate

  /////////////////////////////////////////////////////////////////////////////
  //
  // Radio
  //
  /////////////////////////////////////////////////////////////////////////////

  wire pps_radioclk;

  // Synchronize the PPS signal to the radio clock domain
  synchronizer pps_radio_sync (
    .clk(radio_clk), .rst(1'b0), .in(pps_refclk), .out(pps_radioclk)
  );

  localparam RADIO_INPUT_BUFF_SIZE   = 8'd11;
  // The radio needs a larger output buffer compared to other blocks because it is a finite
  // rate producer i.e. the input is not backpressured.
  // Here, we allocate enough room from 2 MTU sized packets. This buffer serves as a
  // packet gate so we need room for an additional packet if the first one is held due to
  // contention on the crossbar. Any additional buffering will be largely a waste.
  localparam RADIO_OUTPUT_BUFF_SIZE  = 8'd10;

  wire [31:0] rx_int[0:NUM_CHANNELS-1], rx_data[0:NUM_CHANNELS-1], tx_int[0:NUM_CHANNELS-1], tx_data[0:NUM_CHANNELS-1];
  wire        db_fe_set_stb[0:1];
  wire [7:0]  db_fe_set_addr[0:1];
  wire [31:0] db_fe_set_data[0:1];
  wire        db_fe_rb_stb[0:1];
  wire [7:0]  db_fe_rb_addr[0:1];
  wire [63:0] db_fe_rb_data[0:1];
  wire        rx_running[0:1], tx_running[0:1];
  wire [NUM_RADIO_CORES-1:0] sync_out;

  genvar i;
  generate
    for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
      assign rx_atr[i] = rx_running[i];
      assign tx_atr[i] = tx_running[i];
    end
  endgenerate

  noc_block_radio_core #(
    .NOC_ID(NOC_ID_RADIO),
    .NUM_CHANNELS(NUM_CHANNELS_PER_RADIO),
    .STR_SINK_FIFOSIZE({NUM_CHANNELS_PER_RADIO{RADIO_INPUT_BUFF_SIZE}}),
    .MTU(RADIO_OUTPUT_BUFF_SIZE)
  ) noc_block_radio_core_i (
    // Clocks and reset
    .bus_clk(bus_clk),
    .bus_rst(bus_rst),
    .ce_clk(radio_clk),
    .ce_rst(radio_rst),
    //AXIS data to/from crossbar
    .i_tdata(ioce_o_tdata[0]),
    .i_tlast(ioce_o_tlast[0]),
    .i_tvalid(ioce_o_tvalid[0]),
    .i_tready(ioce_o_tready[0]),
    .o_tdata(ioce_i_tdata[0]),
    .o_tlast(ioce_i_tlast[0]),
    .o_tvalid(ioce_i_tvalid[0]),
    .o_tready(ioce_i_tready[0]),
    // Radio front-end
    .rx({rx_data[1],rx_data[0]}),
    .rx_stb({rx_stb[1], rx_stb[0]}),
    .tx({tx_data[1], tx_data[0]}),
    .tx_stb({tx_stb[1], tx_stb[0]}),
    // Timing and sync
    .pps(pps_radioclk),
    .sync_in(1'b0),
    .sync_out(sync_out),
    .rx_running({rx_running[1], rx_running[0]}),
    .tx_running({tx_running[1], tx_running[0]}),
    // Ctrl ports connected to radio dboard and front end core
    .db_fe_set_stb ({db_fe_set_stb [1], db_fe_set_stb [0]}),
    .db_fe_set_addr({db_fe_set_addr[1], db_fe_set_addr[0]}),
    .db_fe_set_data({db_fe_set_data[1], db_fe_set_data[0]}),
    .db_fe_rb_stb  ({db_fe_rb_stb  [1], db_fe_rb_stb  [0]}),
    .db_fe_rb_addr ({db_fe_rb_addr [1], db_fe_rb_addr [0]}),
    .db_fe_rb_data ({db_fe_rb_data [1], db_fe_rb_data [0]}),
    //Debug
    .debug()
  );

  /////////////////////////////////////////////////////////////////////////////
  //
  // Radio Front End Control
  //
  /////////////////////////////////////////////////////////////////////////////

  // Radio Daughter board GPIO
  wire [DB_GPIO_WIDTH-1:0] db_gpio_in[0:NUM_CHANNELS-1];
  wire [DB_GPIO_WIDTH-1:0] db_gpio_out[0:NUM_CHANNELS-1];
  wire [DB_GPIO_WIDTH-1:0] db_gpio_ddr[0:NUM_CHANNELS-1];
  wire [DB_GPIO_WIDTH-1:0] db_gpio_fab[0:NUM_CHANNELS-1];
  wire [31:0] radio_gpio_out[0:NUM_CHANNELS-1];
  wire [31:0] radio_gpio_ddr[0:NUM_CHANNELS-1];
  wire [31:0] radio_gpio_in[0:NUM_CHANNELS-1];
  wire [31:0] leds[0:NUM_CHANNELS-1];

  generate
    for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
      // Radio Data
      assign rx_int[i] = rx[32*i+31:32*i];
      assign tx[32*i+31:32*i] = tx_int[i];
      // GPIO
      assign db_gpio_out_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH] = db_gpio_out[i];
      assign db_gpio_ddr_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH] = db_gpio_ddr[i];
      assign db_gpio_in[i] = db_gpio_in_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH];
      assign db_gpio_fab[i] = db_gpio_fab_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH];
      // LEDs
      assign leds_flat[32*i+31:32*i] = leds[i];
    end
  endgenerate

  generate
    for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
      n3xx_db_fe_core db_fe_core_i (
        .clk(radio_clk),
        .reset(radio_rst),
        .set_stb(db_fe_set_stb[i]),
        .set_addr(db_fe_set_addr[i]),
        .set_data(db_fe_set_data[i]),
        .rb_stb(db_fe_rb_stb[i]),
        .rb_addr(db_fe_rb_addr[i]),
        .rb_data(db_fe_rb_data[i]),
        .time_sync(sync_out[i < 2 ? 0 : 1]),
        .tx_stb(tx_stb[i]),
        .tx_data_in(tx_data[i]),
        .tx_data_out(tx_int[i]),
        .tx_running(tx_running[i]),
        .rx_stb(rx_stb[i]),
        .rx_data_in(rx_int[i]),
        .rx_data_out(rx_data[i]),
        .rx_running(rx_running[i]),
        .misc_ins(32'h0),
        .misc_outs(),
        .fp_gpio_in(radio_gpio_in[i]),
        .fp_gpio_out(radio_gpio_out[i]),
        .fp_gpio_ddr(radio_gpio_ddr[i]),
        .fp_gpio_fab(32'h0),
        .db_gpio_in(db_gpio_in[i]),
        .db_gpio_out(db_gpio_out[i]),
        .db_gpio_ddr(db_gpio_ddr[i]),
        .db_gpio_fab(db_gpio_fab[i]),
        .leds(leds[i]),
        .spi_clk(1'b0),
        .spi_rst(1'b0),
        .sen(),
        .sclk(),
        .mosi(),
        .miso(1'b0)
      );
    end
  endgenerate

  ////////////////////////////////////////////////////////////////////////
  //
  // axi_crossbar ports:
  //   The crossbar has 16 ports out of which Port 4 to Port 15 can be used
  //   for RFNOC blocks. Note that Radio and DRAM are always included by default
  //   but DDC/DUC and other blocks are not and need to be included via
  //   rfnoc_ce_default_inst_e31x.v which can be edited manually or
  //   automatically generated by rfnoc mod tool.
  //
  // 0  - DMA to PS
  // 1  - Radio
  // 2  - CE0
  // ...
  // ...
  // 15 - CE13
  //
  ////////////////////////////////////////////////////////////////////////

  // Included automatically instantiated CEs sources file created by RFNoC mod tool

`ifdef RFNOC
  `include "rfnoc_ce_auto_inst_e31x.v"
`else
  `include "rfnoc_ce_default_inst_e31x.v"
`endif

  localparam XBAR_NUM_PORTS = XBAR_FIXED_PORTS + NUM_CE + NUM_IO_CE;

  wire  [(NUM_CE + NUM_IO_CE)*64-1:0] xbar_ce_o_tdata;
  wire  [(NUM_CE + NUM_IO_CE)-1:0]    xbar_ce_o_tlast;
  wire  [(NUM_CE + NUM_IO_CE)-1:0]    xbar_ce_o_tvalid;
  wire  [(NUM_CE + NUM_IO_CE)-1:0]    xbar_ce_o_tready;

  wire  [(NUM_CE + NUM_IO_CE)*64-1:0] xbar_ce_i_tdata;
  wire  [(NUM_CE + NUM_IO_CE)-1:0]    xbar_ce_i_tlast;
  wire  [(NUM_CE + NUM_IO_CE)-1:0]    xbar_ce_i_tvalid;
  wire  [(NUM_CE + NUM_IO_CE)-1:0]    xbar_ce_i_tready;

  assign xbar_ce_i_tdata                      = {ce_flat_i_tdata, ioce_flat_i_tdata};
  assign xbar_ce_i_tvalid                     = {ce_i_tvalid, ioce_i_tvalid};
  assign {ce_i_tready, ioce_i_tready}         = xbar_ce_i_tready;
  assign xbar_ce_i_tlast                      = {ce_i_tlast, ioce_i_tlast};

  assign {ce_flat_o_tdata, ioce_flat_o_tdata} = xbar_ce_o_tdata;
  assign {ce_o_tvalid, ioce_o_tvalid}         = xbar_ce_o_tvalid;
  assign xbar_ce_o_tready                     = {ce_o_tready, ioce_o_tready};
  assign {ce_o_tlast, ioce_o_tlast}           = xbar_ce_o_tlast;

  // Note: The custom accelerator inputs / outputs bitwidth grow based on NUM_CE
  axi_crossbar_regport #(
    .REG_BASE(REG_BASE_XBAR),
    .REG_DWIDTH(REG_DWIDTH),  // Width of the AXI4-Lite data bus (must be 32 or 64)
    .REG_AWIDTH(REG_AWIDTH),  // Width of the address bus
    .FIFO_WIDTH(64),
    .DST_WIDTH(16),
    .NUM_INPUTS(XBAR_NUM_PORTS),
    .NUM_OUTPUTS(XBAR_NUM_PORTS)
  ) axi_crossbar_regport_i (
    .clk(bus_clk), .reset(bus_rst), .clear(1'b0),
    .i_tdata({xbar_ce_i_tdata,dmai_tdata}),
    .i_tlast({xbar_ce_i_tlast,dmai_tlast}),
    .i_tvalid({xbar_ce_i_tvalid,dmai_tvalid}),
    .i_tready({xbar_ce_i_tready,dmai_tready}),
    .o_tdata({xbar_ce_o_tdata,dmao_tdata}),
    .o_tlast({xbar_ce_o_tlast,dmao_tlast}),
    .o_tvalid({xbar_ce_o_tvalid,dmao_tvalid}),
    .o_tready({xbar_ce_o_tready,dmao_tready}),
    .pkt_present({xbar_ce_i_tvalid,dmai_tvalid}),
    .reg_wr_req(reg_wr_req),
    .reg_wr_addr(reg_wr_addr),
    .reg_wr_data(reg_wr_data),
    .reg_rd_req(reg_rd_req),
    .reg_rd_addr(reg_rd_addr),
    .reg_rd_data(reg_rd_data_xbar),
    .reg_rd_resp(reg_rd_resp_xbar)
  );

  /////////////////////////////////////////////////////////////////////////////
  //
  // Front-panel GPIO
  //
  /////////////////////////////////////////////////////////////////////////////

  wire [FP_GPIO_WIDTH-1:0] radio_gpio_in_sync;
  wire [FP_GPIO_WIDTH-1:0] radio_gpio_src_out;
  reg  [FP_GPIO_WIDTH-1:0] radio_gpio_src_out_reg;
  wire [FP_GPIO_WIDTH-1:0] radio_gpio_src_ddr;
  reg  [FP_GPIO_WIDTH-1:0] radio_gpio_src_ddr_reg = ~0;

  // Double-synchronize the inputs to the PS
  synchronizer #(
    .INITIAL_VAL(1'b0), .WIDTH(FP_GPIO_WIDTH)
    ) ps_gpio_in_sync_i (
    .clk(bus_clk), .rst(1'b0), .in(fp_gpio_in), .out(ps_gpio_in)
  );

  // Double-synchronize the inputs to the radio
  synchronizer #(
    .INITIAL_VAL(1'b0), .WIDTH(FP_GPIO_WIDTH)
    ) radio_gpio_in_sync_i (
    .clk(radio_clk), .rst(1'b0), .in(fp_gpio_in), .out(radio_gpio_in_sync)
  );

  // Map the double-synchronized inputs to all radio channels
  generate
    for (i=0; i<NUM_CHANNELS; i=i+1) begin: gen_fp_gpio_in_sync
      assign radio_gpio_in[i][FP_GPIO_WIDTH-1:0] = radio_gpio_in_sync;
    end
  endgenerate

  // For each of the FP GPIO bits, implement four control muxes
  generate
    for (i=0; i<FP_GPIO_WIDTH; i=i+1) begin: gpio_muxing_gen

      // 1) Select which radio drives the output
      assign radio_gpio_src_out[i] = radio_gpio_out[fp_gpio_src_reg[2*i+1:2*i]][i];
      always @ (posedge radio_clk) begin
        if (radio_rst) begin
          radio_gpio_src_out_reg <= 0;
        end else begin
          radio_gpio_src_out_reg <= radio_gpio_src_out;
        end
      end

      // 2) Select which radio drives the direction
      assign radio_gpio_src_ddr[i] = radio_gpio_ddr[fp_gpio_src_reg[2*i+1:2*i]][i];
      always @ (posedge radio_clk) begin
        if (radio_rst) begin
          radio_gpio_src_ddr_reg <= ~0;
        end else begin
          radio_gpio_src_ddr_reg <= radio_gpio_src_ddr;
        end
      end

      // 3) Select if the radio or the ps drives the output
      //
      // The following implements a 2:1 mux in a LUT explicitly to avoid
      // glitches that can be introduced by unexpected Vivado synthesis.
      //
      (* dont_touch = "TRUE" *) LUT3 #(
        .INIT(8'hCA) // Specify LUT Contents. O = ~I2&I0 | I2&I1
      ) mux_out_i (
        .O(fp_gpio_out[i]),             // LUT general output. Mux output
        .I0(radio_gpio_src_out_reg[i]), // LUT input. Input 1
        .I1(ps_gpio_out[i]),            // LUT input. Input 2
        .I2(fp_gpio_master_reg[i])      // LUT input. Select bit
      );

      // 4) Select if the radio or the PS drives the direction
      //
      (* dont_touch = "TRUE" *) LUT3 #(
        .INIT(8'hC5) // Specify LUT Contents. O = ~I2&I0 | I2&~I1
      ) mux_ddr_i (
        .O(fp_gpio_tri[i]),             // LUT general output. Mux output
        .I0(radio_gpio_src_ddr_reg[i]), // LUT input. Input 1
        .I1(ps_gpio_tri[i]),            // LUT input. Input 2
        .I2(fp_gpio_master_reg[i])      // LUT input. Select bit
      );

    end
  endgenerate

endmodule //e31x_core